ABSTRACT

As the current distribution network power equipment cannot realize the visualization of spatial data, the retrieval accuracy of bad data decreases. Therefore, an automatic retrieval algorithm for bad data of intelligent distribution network power equipment is proposed. The spatial data of smart distribution network is collected and geographic information science (GIS) technology is used to realize data visualization. On this basis, real-time operating data is collected in the distribution network, and according to the data collection results and the operation mechanism of the distribution network, it can be identified whether there are bad data in the distribution network and retrieved. Through the display data in the GIS visualization interface, the distance measurement method is used to determine the specific location of the bad data in the intelligent distribution network. The experimental results show that the research method’s bad data retrieval error and bad data position coordinate calculation error are small, the retrieval accuracy is high, the time-consuming is short, and the practical application effect is good.

References

1.
E.
 
Dehnavi
,
S.
 
Afsharnia
, and
K.
 
Gholami
, “
Optimal Allocation of Unified Power Quality Conditioner in the Smart Distribution Grids
,”
Electrical Engineering
101
, no. 
4
(December
2019
):
1277
1293
,
2.
B.
 
Chen
, “
Research on Cloud Storage Security Data Retrieval Method Based on Optimized Encryption
,”
Modern Electronic Technology
40
, no. 
15
(August
2017
):
80
82
,
3.
H. J.
 
Du
,
W.
 
Li
,
W. J.
 
Zhang
, and
H.
 
Yu
, “
Distributed Retrieval System Based on Cloud Computing Technology
,”
Advances of Power System & Hydroelectric Engineering
34
, no. 
9
(June
2018
):
19
24
,
4.
V.
 
Davatgaran
,
M.
 
Saniei
, and
S. S.
 
Mortazavi
, “
Smart Distribution System Management Considering Electrical and Thermal Demand Response of Energy Hubs
,”
Energy
169
, no. 
15
(February
2019
):
38
49
,
5.
N.
 
Amirhossein
,
A.
 
Amir
,
M.
 
Rashidinejad
, and
M. H.
 
Amini
, “
Probabilistic–Possibilistic Model for a Parking Lot in the Smart Distribution Network Expansion Planning
,”
IET Generation, Transmission & Distribution
12
, no. 
13
(July
2018
):
3363
3374
,
6.
A.
 
Hajizadeh
and
M. R.
 
Kikhavani
, “
Coordination of Bidirectional Charging for Plug-In Electric Vehicles in Smart Distribution Systems
,”
Electrical Engineering
100
, no. 
2
(June
2018
):
1085
1096
,
7.
S.
 
Bahceci
,
A.
 
Dogan
,
T.
 
Yalcinoz
, and
F.
 
Daldaban
, “
Energy Storage System Location Selection for Smart Grid Applications on Distribution Networks
,”
Electrical Engineering
99
, no. 
1
(March
2017
):
357
366
,
8.
W.
 
Cheng
,
R.
 
Cheng
,
J.
 
Liu
,
W.
 
Ma
,
J.
 
Li
,
W.
 
Guan
,
D.
 
Zhang
, and
T.
 
Yu
, “
Multidimensional Intelligent Distribution Network Load Analysis and Forecasting Management System Based on Multidata Fusion Technology
,”
Mathematical Problems in Engineering
2021
(February
2021
):
6677842
,
9.
R.
 
Zafar
,
J.
 
Ravishankar
,
J. E.
 
Fletcher
, and
H. R.
 
Pota
, “
Multi-timescale Model Predictive Control of Battery Energy Storage System Using Conic Relaxation in Smart Distribution Grids
,”
IEEE Transactions on Power Systems
33
, no. 
6
(June
2018
):
7152
7161
,
10.
M. Z.
 
El-Sharafy
and
H. E. Z.
 
Farag
, “
Back-Feed Power Restoration Using Distributed Constraint Optimization in Smart Distribution Grids Clustered into Microgrids
,”
Applied Energy
206
, no. 
15
(November
2017
):
1102
1117
,
11.
H.
 
Gao
,
L.
 
Wang
,
J.
 
Liu
, and
Z.
 
Wei
, “
Integrated Day-Ahead Scheduling Considering Active Management in Future Smart Distribution System
,”
IEEE Transactions on Power Systems
33
, no. 
6
(June
2018
):
6049
6061
,
12.
B.
 
Zeng
,
G.
 
Wu
,
J.
 
Wang
,
J.
 
Zhang
, and
M.
 
Zheng
, “
Impact of Behavior-Driven Demand Response on Supply Adequacy in Smart Distribution Systems
,”
Applied Energy
202
, no. 
15
(September
2017
):
125
137
,
13.
S.
 
Hasanvand
,
M.
 
Nayeripour
,
S. A.
 
Arefifar
, and
H.
 
Fallahzadeh-Abarghouei
, “
Spectral Clustering for Designing Robust and Reliable Multi-MG Smart Distribution Systems
,”
IET Generation, Transmission & Distribution
12
, no. 
6
(March
2018
):
1359
1365
,
14.
J. J.
 
Nielsen
,
H.
 
Ganem
,
L.
 
Jorguseski
,
K.
 
Alic
,
M.
 
Smolnikar
,
Z.
 
Zhu
,
N. K.
 
Pratas
,
M.
 
Golinski
,
H.
 
Zhang
,
U.
 
Kuhar
,
Z.
 
Fan
, and
A.
 
Svigelj
, “
Secure Real-Time Monitoring and Management of Smart Distribution Grid Using Shared Cellular Networks
,”
IEEE Wireless Communications
24
, no. 
2
(April
2017
):
10
17
,
15.
M.
 
Majidi
and
M.
 
Etezadi-Amoli
, “
A New Fault Location Technique in Smart Distribution Networks Using Synchronized/Non-synchronized Measurements
,”
IEEE Transactions on Power Delivery
33
, no. 
3
(December
2017
):
1358
1368
,
16.
Y. X.
 
Liu
,
G.
 
Li
, and
C. S.
 
Wang
, “
A Robust Operation-Based Scheduling Optimization for Smart Distribution Networks with Multi-microgrids
,”
Applied Energy
228
, no. 
15
(October
2018
):
130
140
,
17.
M. U.
 
Usman
and
M. O.
 
Faruque
, “
Validation of a PMU-Based Fault Location Identification Method for Smart Distribution Network with Photovoltaics Using Real-Time Data
,”
IET Generation, Transmission & Distribution
12
, no. 
21
(October
2018
):
5824
5833
,
18.
F. A.
 
Schreckenbach
,
K.
 
Rothermund
, and
N.
 
Koranyi
, “
Quantity Matters: The Frequency of Deception Influences Automatic Memory Retrieval Effects
,”
Quarterly Journal of Experimental Psychology
73
, no. 
11
(November
2020
):
1774
1783
,
19.
Y.
 
Duan
,
L.
 
Luo
,
Y.
 
Li
,
C.
 
Rehtanz
, and
M.
 
Küch
, “
Co-simulation of Distributed Control System Based on JADE for Smart Distribution Network with Distributed Generations
,”
IET Generation, Transmission, & Distribution
11
, no. 
12
(March
2017
):
3097
3105
,
20.
A.
 
Milczarek
and
M.
 
Malinowski
, “
Comparison of Classical and Smart Transformers Impact on MV Distribution Grid,”
IEEE Transactions on Power Delivery
35
, no. 
3
(September
2020
):
1339
1347
,
You do not currently have access to this content.