Abstract

The primary objective of this investigation is to construct a machine learning (ML) model to enhance the predictive accuracy of geopolymer concrete (GPC) compressive strength (CS) while extracting valuable insights from input variables. Considering the crucial task of optimizing hyperparameters, three efficient optimization algorithms are harnessed for this purpose: the FOX optimization algorithm (FOX), the golden jackal optimization algorithm, and the honey badger algorithm. The dataset under examination incorporates 156 experimental samples comprising 15 variables. Through a systematic exploration of population size and epoch parameters, hyperparameters are fine-tuned for the 12 XGB models. Notably, model XGB_06, which employs FOX with a population size of 20, attains the highest coefficient of determination value of 0.9662 on the testing dataset, achieving a fine equilibrium between computational efficiency and superior accuracy. This model’s excellence is further proved by its outperformance of eight well-known ML algorithms during the comparative analysis step. In addition, this study presents the results of partial dependence plots, shedding light on the intricate relationships between input variables and GP’s CS. The insights gleaned here have far-reaching implications, offering avenues for refining the predictive modeling of GPC’s CS and extending its applications within materials science and engineering.

References

1.
Al-Rashed
R.
and
Al-Jabari
M.
, “
Concrete Protection by Combined Hygroscopic and Hydrophilic Crystallization Waterproofing Applied to Fresh Concrete
,”
Case Studies in Construction Materials
15
(
2021
): e00635, https://doi.org/10.1016/j.cscm.2021.e00635
2.
Benhelal
E.
,
Shamsaei
E.
, and
Rashid
M. I.
, “
Novel Modifications in a Conventional Clinker Making Process for Sustainable Cement Production
,”
Journal of Cleaner Production
221
(
2019
):
389
397
, https://doi.org/10.1016/j.jclepro.2019.02.259
3.
Liu
G.
,
Yang
H.
,
Fu
Y.
,
Mao
C.
,
Xu
P.
,
Hong
J.
, and
Li
R.
, “
Cyber-Physical System-Based Real-Time Monitoring and Visualization of Greenhouse Gas Emissions of Prefabricated Construction
,”
Journal of Cleaner Production
246
(
2020
): 119059, https://doi.org/10.1016/j.jclepro.2019.119059
4.
Li
C.
,
Gong
X. Z.
,
Cui
S. P.
,
Wang
Z. H.
,
Zheng
Y.
, and
Chi
B. C.
, “
CO2 Emissions due to Cement Manufacture
,”
Materials Science Forum
685
(
2011
):
181
187
, https://doi.org/10.4028/www.scientific.net/MSF.685.181
5.
Peng
J. X.
,
Huang
L.
,
Zhao
Y. B.
,
Chen
P.
,
Zeng
L.
, and
Zheng
W.
, “
Modeling of Carbon Dioxide Measurement on Cement Plants
,”
Advanced Materials Research
610–613
(
2012
):
2120
2128
, https://doi.org/10.4028/www.scientific.net/AMR.610-613.2120
6.
Huntzinger
D. N.
and
Eatmon
T. D.
, “
A Life-Cycle Assessment of Portland Cement Manufacturing: Comparing the Traditional Process with Alternative Technologies
,”
Journal of Cleaner Production
17
, no. 
7
(May
2009
):
668
675
, https://doi.org/10.1016/j.jclepro.2008.04.007
7.
Meyer
C.
, “
The Greening of the Concrete Industry
,”
Cement and Concrete Composites
31
, no. 
8
(September
2009
):
601
605
, https://doi.org/10.1016/j.cemconcomp.2008.12.010
8.
Chen
C.
,
Habert
G.
,
Bouzidi
Y.
, and
Jullien
A.
, “
Environmental Impact of Cement Production: Detail of the Different Processes and Cement Plant Variability Evaluation
,”
Journal of Cleaner Production
18
, no. 
5
(March
2010
):
478
485
, https://doi.org/10.1016/j.jclepro.2009.12.014
9.
Oner
A.
and
Akyuz
S.
, “
An Experimental Study on Optimum Usage of GGBS for the Compressive Strength of Concrete
,”
Cement and Concrete Composites
29
, no. 
6
(July
2007
):
505
514
, https://doi.org/10.1016/j.cemconcomp.2007.01.001
10.
Kovalchuk
G.
,
Fernández-Jiménez
A.
, and
Palomo
A.
, “
Alkali-Activated Fly Ash: Effect of Thermal Curing Conditions on Mechanical and Microstructural Development – Part II
,”
Fuel
86
, no. 
3
(February
2007
):
315
322
, https://doi.org/10.1016/j.fuel.2006.07.010
11.
Davidovits
J.
, “
Geopolymer Cements to Minimize Carbon Dioxide Greenhouse-Warming
,”
Ceramic Transactions
37
, no. 
1
(April
1993
):
165
182
.
12.
Ma
C.-K.
,
Awang
A. Z.
, and
Omar
W.
, “
Structural and Material Performance of Geopolymer Concrete: A Review
,”
Construction and Building Materials
186
(
2018
):
90
102
, https://doi.org/10.1016/j.conbuildmat.2018.07.111
13.
Amran
Y. H. M.
,
Alyousef
R.
,
Alabduljabbar
H.
, and
El-Zeadani
M.
, “
Clean Production and Properties of Geopolymer Concrete; A Review
,”
Journal of Cleaner Production
251
(
2020
): 119679, https://doi.org/10.1016/j.jclepro.2019.119679
14.
Hassan
A.
,
Arif
M.
, and
Shariq
M.
, “
Use of Geopolymer Concrete for a Cleaner and Sustainable Environment – A Review of Mechanical Properties and Microstructure
,”
Journal of Cleaner Production
223
(
2019
):
704
728
, https://doi.org/10.1016/j.jclepro.2019.03.051
15.
Turner
L. K.
and
Collins
F. G.
, “
Carbon Dioxide Equivalent (CO2-e) Emissions: A Comparison between Geopolymer and OPC Cement Concrete
,”
Construction and Building Materials
43
(
2013
):
125
130
, https://doi.org/10.1016/j.conbuildmat.2013.01.023
16.
Kumar
R.
,
Verma
M.
, and
Dev
N.
, “
Investigation on the Effect of Seawater Condition, Sulphate Attack, Acid Attack, Freeze–Thaw Condition, and Wetting–Drying on the Geopolymer Concrete
,”
Iranian Journal of Science and Technology, Transactions of Civil Engineering
46
, no. 
4
(August
2022
):
2823
2853
, https://doi.org/10.1007/s40996-021-00767-9
17.
Parathi
S.
,
Nagarajan
P.
, and
Pallikkara
S. A.
, “
Ecofriendly Geopolymer Concrete: A Comprehensive Review
,”
Clean Technologies and Environmental Policy
23
, no. 
6
(August
2021
):
1701
1713
, https://doi.org/10.1007/s10098-021-02085-0
18.
Nnaemeka
O. F.
and
Singh
N. B.
, “
Durability Properties of Geopolymer Concrete Made from Fly Ash in Presence of Kaolin
,”
Materials Today: Proceedings
29
, Part 3 (
2020
):
781
784
, https://doi.org/10.1016/j.matpr.2020.04.696
19.
Kotwal
A. R.
,
Kim
Y. J.
,
Hu
J.
, and
Sriraman
V.
, “
Characterization and Early Age Physical Properties of Ambient Cured Geopolymer Mortar Based on Class C Fly Ash
,”
International Journal of Concrete Structures and Materials
9
, no. 
1
(March
2015
):
35
43
, https://doi.org/10.1007/s40069-014-0085-0
20.
Pimraksa
K.
,
Chindaprasirt
P.
,
Rungchet
A.
,
Sagoe-Crentsil
K.
, and
Sato
T.
, “
Lightweight Geopolymer Made of Highly Porous Siliceous Materials with Various Na2O/Al2O3 and SiO2/Al2O3 Ratios
,”
Materials Science and Engineering: A
528
, no. 
21
(August
2011
):
6616
6623
, https://doi.org/10.1016/j.msea.2011.04.044
21.
Hadi
M. N. S.
,
Zhang
H.
, and
Parkinson
S.
, “
Optimum Mix Design of Geopolymer Pastes and Concretes Cured in Ambient Condition Based on Compressive Strength, Setting Time and Workability
,”
Journal of Building Engineering
23
(
2019
):
301
313
, https://doi.org/10.1016/j.jobe.2019.02.006
22.
Ahmed
H. U.
,
Mohammed
A. S.
, and
Mohammed
A. A.
, “
Proposing Several Model Techniques Including ANN and M5P-Tree to Predict the Compressive Strength of Geopolymer Concretes Incorporated with Nano-silica
,”
Environmental Science and Pollution Research
29
, no. 
47
(October
2022
):
71232
71256
, https://doi.org/10.1007/s11356-022-20863-1
23.
Songpiriyakij
S.
,
Kubprasit
T.
,
Jaturapitakkul
C.
, and
Chindaprasirt
P.
, “
Compressive Strength and Degree of Reaction of Biomass- and Fly Ash-Based Geopolymer
,”
Construction and Building Materials
24
, no. 
3
(March
2010
):
236
240
, https://doi.org/10.1016/j.conbuildmat.2009.09.002
24.
Rai
B.
,
Roy
L. B.
, and
Rajjak
M.
, “
A Statistical Investigation of Different Parameters Influencing Compressive Strength of Fly Ash Induced Geopolymer Concrete
,”
Structural Concrete
19
, no. 
5
(October
2018
):
1268
1279
, https://doi.org/10.1002/suco.201700193
25.
Jangra
P.
,
Singhal
D.
,
Junaid
M. T.
,
Jindal
B. B.
, and
Mehta
A.
, “
Mechanical and Microstructural Properties of Fly Ash Based Geopolymer Concrete Incorporating Alccofine at Ambient Curing
,”
Construction and Building Materials
180
(
2018
):
298
307
, https://doi.org/10.1016/j.conbuildmat.2018.05.286
26.
Farooq
F.
,
Ahmed
W.
,
Akbar
A.
,
Aslam
F.
, and
Alyousef
R.
, “
Predictive Modeling for Sustainable High-Performance Concrete from Industrial Wastes: A Comparison and Optimization of Models Using Ensemble Learners
,”
Journal of Cleaner Production
292
(
2021
): 126032, https://doi.org/10.1016/j.jclepro.2021.126032
27.
Soni
N.
and
Shukla
D. K.
, “
Analytical Study on Mechanical Properties of Concrete Containing Crushed Recycled Coarse Aggregate as an Alternative of Natural Sand
,”
Construction and Building Materials
266
, Part A (January
2021
): 120595, https://doi.org/10.1016/j.conbuildmat.2020.120595
28.
Ahmed
H. U.
,
Mohammed
A. S.
,
Mohammed
A. A.
, and
Faraj
R. H.
, “
Systematic Multiscale Models to Predict the Compressive Strength of Fly Ash-Based Geopolymer Concrete at Various Mixture Proportions and Curing Regimes
,”
PLoS ONE
16
, no. 
6
(June
2021
): e0253006, https://doi.org/10.1371/journal.pone.0253006
29.
Li
N.
,
Shi
C.
,
Zhang
Z.
,
Wang
H.
, and
Liu
Y.
, “
A Review on Mixture Design Methods for Geopolymer Concrete
,”
Composites Part B: Engineering
178
(
2019
): 107490, https://doi.org/10.1016/j.compositesb.2019.107490
30.
Li
N.
,
Shi
C.
,
Zhang
Z.
,
Zhu
D.
,
Hwang
H.-J.
,
Zhu
Y.
, and
Sun
T.
, “
A Mixture Proportioning Method for the Development of Performance-Based Alkali-Activated Slag-Based Concrete
,”
Cement and Concrete Composites
93
(
2018
):
163
174
, https://doi.org/10.1016/j.cemconcomp.2018.07.009
31.
Assi
L. N.
,
Deaver
E. E.
, and
Ziehl
P.
, “
Effect of Source and Particle Size Distribution on the Mechanical and Microstructural Properties of Fly Ash-Based Geopolymer Concrete
,”
Construction and Building Materials
167
(
2018
):
372
380
, https://doi.org/10.1016/j.conbuildmat.2018.01.193
32.
Alkayem
N. F.
,
Shen
L.
,
Mayya
A.
,
Asteris
P. G.
,
Fu
R.
,
Di Luzio
G.
,
Strauss
A.
, and
Cao
M.
, “
Prediction of Concrete and FRC Properties at High Temperature Using Machine and Deep Learning: A Review of Recent Advances and Future Perspectives
,”
Journal of Building Engineering
83
(
2024
): 108369, https://doi.org/10.1016/j.jobe.2023.108369
33.
Ly
H.-B.
,
Nguyen
T.-A.
,
Thi Mai
H.-V.
, and
Tran
V. Q.
, “
Development of Deep Neural Network Model to Predict the Compressive Strength of Rubber Concrete
,”
Construction and Building Materials
301
(
2021
): 124081, https://doi.org/10.1016/j.conbuildmat.2021.124081
34.
Zhang
J.
,
Xu
J.
,
Liu
C.
, and
Zheng
J.
, “
Prediction of Rubber Fiber Concrete Strength Using Extreme Learning Machine
,”
Frontiers in Materials
7
(
2021
): 582635, https://doi.org/10.3389/fmats.2020.582635
35.
Khademi
F.
,
Jamal
S. M.
,
Deshpande
N.
, and
Londhe
S.
, “
Predicting Strength of Recycled Aggregate Concrete Using Artificial Neural Network, Adaptive Neuro-fuzzy Inference System and Multiple Linear Regression
,”
International Journal of Sustainable Built Environment
5
, no. 
2
(December
2016
):
355
369
, https://doi.org/10.1016/j.ijsbe.2016.09.003
36.
Duan
Z.-H.
,
Kou
S.-C.
, and
Poon
C. S.
, “
Prediction of Compressive Strength of Recycled Aggregate Concrete Using Artificial Neural Networks
,”
Construction and Building Materials
40
(
2013
):
1200
1206
, https://doi.org/10.1016/j.conbuildmat.2012.04.063
37.
Sahoo
S.
and
Mahapatra
T. R.
, “
ANN Modeling to Study Strength Loss of Fly Ash Concrete against Long Term Sulphate Attack
,”
Materials Today: Proceedings
5
, no. 
11
, part 3 (December
2018
):
24595
24604
, https://doi.org/10.1016/j.matpr.2018.10.257
38.
Topçu
I. B.
and
Sarıdemir
M.
, “
Prediction of Compressive Strength of Concrete Containing Fly Ash Using Artificial Neural Networks and Fuzzy Logic
,”
Computational Materials Science
41
, no. 
3
(January
2008
):
305
311
, https://doi.org/10.1016/j.commatsci.2007.04.009
39.
Golafshani
E. M.
and
Pazouki
G.
, “
Predicting the Compressive Strength of Self-Compacting Concrete Containing Fly Ash Using a Hybrid Artificial Intelligence Method
,”
Computers and Concrete
22
, no. 
4
(October
2018
):
419
437
, https://doi.org/10.12989/cac.2018.22.4.419
40.
Abuodeh
O.
,
Abdalla
J. A.
, and
Hawileh
R. A.
, “
Prediction of Compressive Strength of Ultra-high Performance Concrete Using SFS and ANN
,” in
2019 Eighth International Conference on Modeling Simulation and Applied Optimization (ICMSAO 2019)
(
Piscataway, NJ
:
Institute of Electrical and Electronics Engineers
,
2019
),
347
351
, https://doi.org/10.1109/ICMSAO.2019.8880452
41.
Abellán García
J.
,
Fernández Gómez
J.
, and
Torres Castellanos
N.
, “
Properties Prediction of Environmentally Friendly Ultra-high-performance Concrete Using Artificial Neural Networks
,”
European Journal of Environmental and Civil Engineering
26
, no. 
6
(April
2022
):
2319
2343
, https://doi.org/10.1080/19648189.2020.1762749
42.
Yeh
I.-C.
, “
Modeling of Strength of High-Performance Concrete Using Artificial Neural Networks
,”
Cement and Concrete Research
28
, no. 
12
(December
1998
):
1797
1808
, https://doi.org/10.1016/S0008-8846(98)00165-3
43.
Nguyen
N.-H.
,
Vo
T. P.
,
Lee
S.
, and
Asteris
P. G.
, “
Heuristic Algorithm-Based Semi-empirical Formulas for Estimating the Compressive Strength of the Normal and High Performance Concrete
,”
Construction and Building Materials
304
(
2021
): 124467, https://doi.org/10.1016/j.conbuildmat.2021.124467
44.
Emad
W.
,
Mohammed
A. S.
,
Bras
A.
,
Asteris
P. G.
,
Kurda
R.
,
Muhammed
Z.
,
Hassan
A. M. T.
,
Qaidi
S. M. A.
, and
Sihag
P.
, “
Metamodel Techniques to Estimate the Compressive Strength of UHPFRC Using Various Mix Proportions and a High Range of Curing Temperatures
,”
Construction and Building Materials
349
(
2022
): 128737, https://doi.org/10.1016/j.conbuildmat.2022.128737
45.
Zhang
D.
,
Sun
F.
, and
Liu
T.
, “
Prediction of Compressive Strength of Geopolymer Concrete Based on Support Vector Machine and Modified Cuckoo Algorithm
,”
Advances in Materials Science and Engineering
2021
, no. 
1
(September
2021
): 4286810, https://doi.org/10.1155/2021/4286810
46.
Upreti
K.
,
Verma
M.
,
Agrawal
M.
,
Garg
J.
,
Kaushik
R.
,
Agrawal
C.
,
Singh
D.
, and
Narayanasamy
R.
, “
Prediction of Mechanical Strength by Using an Artificial Neural Network and Random Forest Algorithm
,”
Journal of Nanomaterials
2022
, no. 
1
(July
2022
): 7791582, https://doi.org/10.1155/2022/7791582
47.
Ahmad
A.
,
Ahmad
W.
,
Aslam
F.
, and
Joyklad
P.
, “
Compressive Strength Prediction of Fly Ash-Based Geopolymer Concrete via Advanced Machine Learning Techniques
,”
Case Studies in Construction Materials
16
(
2022
): e00840, https://doi.org/10.1016/j.cscm.2021.e00840
48.
Emarah
D. A.
, “
Compressive Strength Analysis of Fly Ash-Based Geopolymer Concrete Using Machine Learning Approaches
,”
Results in Materials
16
(
2022
): 100347, https://doi.org/10.1016/j.rinma.2022.100347
49.
Khalaf
A. A.
,
Kopecskó
K.
, and
Merta
I.
, “
Prediction of the Compressive Strength of Fly Ash Geopolymer Concrete by an Optimised Neural Network Model
,”
Polymers
14
, no. 
7
(April
2022
): 1423, https://doi.org/10.3390/polym14071423
50.
Amin
M. N.
,
Khan
K.
,
Javed
M. F.
,
Aslam
F.
,
Qadir
M. G.
, and
Faraz
M. I.
, “
Prediction of Mechanical Properties of Fly-Ash/Slag-Based Geopolymer Concrete Using Ensemble and Non-ensemble Machine-Learning Techniques
,”
Materials
15
, no. 
10
(May
2022
): 3478, https://doi.org/10.3390/ma15103478
51.
Bai
M.
,
Zhang
Z.
,
Cao
K.
,
Li
H.
, and
He
C.
, “
Prediction of Compressive Strength of Fly Ash-Slag Based Geopolymer Paste Based on Multi-Optimized Artificial Neural Network
,”
Materials
16
, no. 
3
(January
2023
): 1090, https://doi.org/10.3390/ma16031090
52.
Chen
T.
and
Guestrin
C.
, “
XGBoost: A Scalable Tree Boosting System
,” in
KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(New York: Association for Computing Machinery,
2016
),
785
794
, https://doi.org/10.1145/2939672.2939785
53.
Mohammed
H.
and
Rashid
T.
, “
FOX: A FOX-Inspired Optimization Algorithm
,”
Applied Intelligence
53
, no. 
1
(January
2023
):
1030
1050
, https://doi.org/10.1007/s10489-022-03533-0
54.
Chopra
N.
and
Ansari
M. M.
, “
Golden Jackal Optimization: A Novel Nature-Inspired Optimizer for Engineering Applications
,”
Expert Systems with Applications
198
(
2022
): 116924, https://doi.org/10.1016/j.eswa.2022.116924
55.
Hashim
F. A.
,
Houssein
E. H.
,
Hussain
K.
,
Mabrouk
M. S.
, and
Al-Atabany
W.
, “
Honey Badger Algorithm: New Metaheuristic Algorithm for Solving Optimization Problems
,”
Mathematics and Computers in Simulation
192
(
2022
):
84
110
, https://doi.org/10.1016/j.matcom.2021.08.013
This content is only available via PDF.
You do not currently have access to this content.