Abstract

This article provides an overview of the latest developments in material selection, performance characteristics, and engineering applications of fiber-reinforced three-dimensional–printed concrete (FR3DPC). As an emerging additive manufacturing technology, FR3DPC effectively addresses the issues of cracking and fragility in traditional concrete by incorporating fibers into 3D-printed concrete. The article initially focuses on analyzing commonly used fiber materials such as steel, glass, carbon, polypropylene, and basalt fibers. These fibers are widely applied to enhance the mechanical properties and crack resistance of concrete because of their light weight, high strength, corrosion resistance, and durability. Subsequently, the key indicators of FR3DPC, including printability, mechanical performance, and durability, are discussed in detail, along with the impact of different fiber materials and process parameters on its performance. Research indicates that optimizing fiber content and concrete mix proportions can significantly improve the overall performance of FR3DPC. In terms of engineering applications, FR3DPC has achieved remarkable results in areas such as construction, road transportation, and infrastructure. Finally, the article highlights the challenges in standardization, optimization of printing processes, and integration with advanced technologies like artificial intelligence. Future research should focus on enhancing manufacturing efficiency, cost-effectiveness, and durability to further expand the application and development of FR3DPC technology.

References

1.
Khan
M. S.
,
Sanchez
F.
, and
Zhou
H.
, “
3-D Printing of Concrete: Beyond Horizons
,”
Cement and Concrete Research
133
(July
2020
): 106070, https://doi.org/10.1016/j.cemconres.2020.106070
2.
Nodehi
M.
,
Aguayo
F.
,
Nodehi
S. E.
,
Gholampour
A.
,
Ozbakkaloglu
T.
, and
Gencel
O.
, “
Durability Properties of 3D Printed Concrete (3DPC)
,”
Automation in Construction
142
(October
2022
): 104479, https://doi.org/10.1016/j.autcon.2022.104479
3.
Xiao
J.
,
Ji
G.
,
Zhang
Y.
,
Ma
G.
,
Mechtcherine
V.
,
Pan
J.
,
Wang
L.
,
Ding
T.
,
Duan
Z.
, and
Du
S.
, “
Large-Scale 3D Printing Concrete Technology: Current Status and Future Opportunities
,”
Cement and Concrete Composites
122
(September
2021
): 104115, https://doi.org/10.1016/j.cemconcomp.2021.104115
4.
Zhu
B.
,
Nematollahi
B.
,
Pan
J.
,
Zhang
Y.
,
Zhou
Z.
, and
Zhang
Y.
, “
3D Concrete Printing of Permanent Formwork for Concrete Column Construction
,”
Cement and Concrete Composites
121
(August
2021
): 104039, https://doi.org/10.1016/j.cemconcomp.2021.104039
5.
Zhang
C.
,
Nerella
V. N.
,
Krishna
A.
,
Wang
S.
,
Zhang
Y.
,
Mechtcherine
V.
, and
Banthia
N.
, “
Mix Design Concepts for 3D Printable Concrete: A Review
,”
Cement and Concrete Composites
122
(September
2021
): 104155, https://doi.org/10.1016/j.cemconcomp.2021.104155
6.
Bhattacherjee
S.
,
Basavaraj
A. S.
,
Rahul
A. V.
,
Santhanam
M.
,
Gettu
R.
,
Panda
B.
,
Schlangen
E.
, et al., “
Sustainable Materials for 3D Concrete Printing
,”
Cement and Concrete Composites
122
(September
2021
): 104156, https://doi.org/10.1016/j.cemconcomp.2021.104156
7.
Muthukrishnan
S.
,
Ramakrishnan
S.
, and
Sanjayan
J.
, “
Technologies for Improving Buildability in 3D Concrete Printing
,”
Cement and Concrete Composites
122
(September
2021
): 104144, https://doi.org/10.1016/j.cemconcomp.2021.104144
8.
Le
T. T.
,
Austin
S. A.
,
Lim
S.
,
Buswell
R. A.
,
Gibb
A. G. F.
, and
Thorpe
T.
, “
Mix Design and Fresh Properties for High-Performance Printing Concrete
,”
Materials and Structures
45
, no. 
8
(August
2012
):
1221
1232
, https://doi.org/10.1617/s11527-012-9828-z
9.
Ma
G.
,
Li
Z.
,
Wang
L.
,
Wang
F.
, and
Sanjayan
J.
, “
Mechanical Anisotropy of Aligned Fiber Reinforced Composite for Extrusion-Based 3D Printing
,”
Construction and Building Materials
202
(March
2019
):
770
783
, https://doi.org/10.1016/j.conbuildmat.2019.01.008
10.
Bos
F. P.
,
Bosco
E.
, and
Salet
T. A. M.
, “
Ductility of 3D Printed Concrete Reinforced with Short Straight Steel Fibers
,”
Virtual and Physical Prototyping
14
, no. 
2
(
2019
):
160
174
, https://doi.org/10.1080/17452759.2018.1548069
11.
Grzymski
F.
,
Musiał
M.
, and
Trapko
T.
, “
Mechanical Properties of Fibre Reinforced Concrete with Recycled Fibres
,”
Construction and Building Materials
198
(February
2019
):
323
331
, https://doi.org/10.1016/j.conbuildmat.2018.11.183
12.
Kang
S.-T.
,
Choi
J.-I.
,
Koh
K.-T.
,
Lee
K. S.
, and
Lee
B. Y.
, “
Hybrid Effects of Steel Fiber and Microfiber on the Tensile Behavior of Ultra-high Performance Concrete
,”
Composite Structures
145
(June
2016
):
37
42
, https://doi.org/10.1016/j.compstruct.2016.02.075
13.
Branston
J.
,
Das
S.
,
Kenno
S. Y.
, and
Taylor
C.
, “
Mechanical Behaviour of Basalt Fibre Reinforced Concrete
,”
Construction and Building Materials
124
(October
2016
):
878
886
, https://doi.org/10.1016/j.conbuildmat.2016.08.009
14.
Solhmirzaei
R.
and
Kodur
V. K. R.
, “
Modeling the Response of Ultra High Performance Fiber Reinforced Concrete Beams
,”
Procedia Engineering
210
(
2017
):
211
219
, https://doi.org/10.1016/j.proeng.2017.11.068
15.
Yang
L.
,
Lin
X.
,
Li
H.
, and
Gravina
R. J.
, “
A New Constitutive Model for Steel Fibre Reinforced Concrete Subjected to Dynamic Loads
,”
Composite Structures
221
(August
2019
): 110849, https://doi.org/10.1016/j.compstruct.2019.04.021
16.
Liu
D.
,
Zhang
Z.
,
Zhang
X.
, and
Chen
Z.
, “
3D Printing Concrete Structures: State of the Art, Challenges, and Opportunities
,”
Construction and Building Materials
405
(November
2023
): 133364, https://doi.org/10.1016/j.conbuildmat.2023.133364
17.
Alchaar
A. S.
and
Al-Tamimi
A. K.
, “
Mechanical Properties of 3D Printed Concrete in Hot Temperatures
,”
Construction and Building Materials
266
, Part A (January
2021
): 120991, https://doi.org/10.1016/j.conbuildmat.2020.120991
18.
Alonso-Canon
S.
,
Blanco-Fernandez
E.
,
Castro-Fresno
D.
,
Yoris-Nobile
A. I.
, and
Castañon-Jano
L.
, “
Reinforcements in 3D Printing Concrete Structures
,”
Archives of Civil and Mechanical Engineering
23
, no. 
1
(March
2023
): 25, https://doi.org/10.1007/s43452-022-00552-z
19.
Zhou
Y.
,
Althoey
F.
,
Alotaibi
B. S.
,
Gamil
Y.
, and
Iftikhar
B.
, “
An Overview of Recent Advancements in Fibre-Reinforced 3D Printing Concrete
,”
Frontiers in Materials
10
(
2023
): 1289340, https://doi.org/10.3389/fmats.2023.1289340
20.
Liu
J.
and
Lv
C.
, “
Properties of 3D-Printed Polymer Fiber-Reinforced Mortars: A Review
,”
Polymers
14
, no. 
7
(April
2022
): 1315, https://doi.org/10.3390/polym14071315
21.
Wang
C.
,
Chen
B.
,
Vo
T. L.
, and
Rezania
M.
, “
Mechanical Anisotropy, Rheology and Carbon Footprint of 3D Printable Concrete: A Review
,”
Journal of Building Engineering
76
(October
2023
): 107309, https://doi.org/10.1016/j.jobe.2023.107309
22.
Lu
Y.
,
Xiao
J.
, and
Li
Y.
, “
3D Printing Recycled Concrete Incorporating Plant Fibres: A Comprehensive Review
,”
Construction and Building Materials
425
(April
2024
): 135951, https://doi.org/10.1016/j.conbuildmat.2024.135951
23.
Thomas
J.
and
Ramaswamy
A.
, “
Mechanical Properties of Steel Fiber-Reinforced Concrete
,”
Journal of Materials in Civil Engineering
19
, no. 
5
(May
2007
):
385
392
, https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385)
24.
Perumal
R.
, “
Correlation of Compressive Strength and Other Engineering Properties of High-Performance Steel Fiber–Reinforced Concrete
,”
Journal of Materials in Civil Engineering
27
, no. 
1
(January
2015
): 04014114, https://doi.org/10.1061/(ASCE)MT.1943-5533.0001050
25.
Nili
M.
and
Afroughsabet
V.
, “
Combined Effect of Silica Fume and Steel Fibers on the Impact Resistance and Mechanical Properties of Concrete
,”
International Journal of Impact Engineering
37
, no. 
8
(August
2010
):
879
886
, https://doi.org/10.1016/j.ijimpeng.2010.03.004
26.
Soulioti
D. V.
,
Barkoula
N. M.
,
Paipetis
A.
, and
Matikas
T. E.
, “
Effects of Fibre Geometry and Volume Fraction on the Flexural Behaviour of Steel-Fibre Reinforced Concrete
,”
Strain
47
, no. 
s1
(June
2011
):
e535
e541
, https://doi.org/10.1111/j.1475-1305.2009.00652.x
27.
Yoo
D.-Y.
,
Kim
S.
,
Park
G.-J.
,
Park
J.-J.
, and
Kim
S.-W.
, “
Effects of Fiber Shape, Aspect Ratio, and Volume Fraction on Flexural Behavior of Ultra-High-Performance Fiber-Reinforced Cement Composites
,”
Composite Structures
174
(August
2017
):
375
388
, https://doi.org/10.1016/j.compstruct.2017.04.069
28.
Wu
Z.
,
Shi
C.
,
He
W.
, and
Wu
L.
, “
Effects of Steel Fiber Content and Shape on Mechanical Properties of Ultra High Performance Concrete
,”
Construction and Building Materials
103
(January
2016
):
8
14
, https://doi.org/10.1016/j.conbuildmat.2015.11.028
29.
Park
S. H.
,
Kim
D. J.
,
Ryu
G. S.
, and
Koh
K. T.
, “
Tensile Behavior of Ultra High Performance Hybrid Fiber Reinforced Concrete
,”
Cement and Concrete Composites
34
, no. 
2
(February
2012
):
172
184
, https://doi.org/10.1016/j.cemconcomp.2011.09.009
30.
Lee
J.-H.
, “
Influence of Concrete Strength Combined with Fiber Content in the Residual Flexural Strengths of Fiber Reinforced Concrete
,”
Composite Structures
168
(May
2017
):
216
225
, https://doi.org/10.1016/j.compstruct.2017.01.052
31.
Abbass
W.
,
Khan
M. I.
, and
Mourad
S.
, “
Evaluation of Mechanical Properties of Steel Fiber Reinforced Concrete with Different Strengths of Concrete
,”
Construction and Building Materials
168
(April
2018
):
556
569
, https://doi.org/10.1016/j.conbuildmat.2018.02.164
32.
Drobiec
Ł.
and
Blazy
J.
, “
Contemporary Non-metallic Fibre Reinforcement Used in Concrete Structures
,”
Izolacje
61
(
2020
):
70
84
.
33.
Podìbradská
J.
,
Černý
R.
,
Drchalová
J.
,
Rovnaníková
P.
, and
Šesták
J.
, “
Analysis of Glass Fiber Reinforced Cement Composites and Their Thermal and Hygric Material Parameters
,”
Journal of Thermal Analysis and Calorimetry
77
, no. 
1
(July
2004
):
85
97
, https://doi.org/10.1023/B:JTAN.0000033191.59911.4d
34.
Ulu
A.
,
Tutar
A. I.
,
Kurklu
A.
, and
Cakir
F.
, “
Effect of Excessive Fiber Reinforcement on Mechanical Properties of Chopped Glass Fiber Reinforced Polymer Concretes
,”
Construction and Building Materials
359
(December
2022
): 129486, https://doi.org/10.1016/j.conbuildmat.2022.129486
35.
Falliano
D.
,
De Domenico
D.
,
Ricciardi
G.
, and
Gugliandolo
E.
, “
Improving the Flexural Capacity of Extrudable Foamed Concrete with Glass-Fiber Bi-directional Grid Reinforcement: An Experimental Study
,”
Composite Structures
209
(February
2019
):
45
59
, https://doi.org/10.1016/j.compstruct.2018.10.092
36.
Meskhi
B.
,
Beskopylny
A. N.
,
Stel’makh
S. A.
,
Shcherban’
E. M.
,
Mailyan
L. R.
,
Beskopylny
N.
, and
Dotsenko
N.
, “
Theoretical and Experimental Substantiation of the Efficiency of Combined-Reinforced Glass Fiber Polymer Composite Concrete Elements in Bending
,”
Polymers
14
, no. 
12
(June
2022
): 2324, https://doi.org/10.3390/polym14122324
37.
Liu
S.
,
Zhou
Y.
,
Zheng
Q.
,
Zhou
J.
,
Jin
F.
, and
Fan
H.
, “
Blast Responses of Concrete Beams Reinforced with Steel-GFRP Composite Bars
,”
Structures
22
(December
2019
):
200
212
, https://doi.org/10.1016/j.istruc.2019.08.010
38.
Blazy
J.
,
Blazy
R.
, and
Drobiec
Ł.
, “
Glass Fiber Reinforced Concrete as a Durable and Enhanced Material for Structural and Architectural Elements in Smart City-A Review
,”
Materials
15
, no. 
8
(April
2022
): 2754, https://doi.org/10.3390/ma15082754
39.
Liu
B.
,
Geng
S.
,
Li
Z.
,
Guo
J.
,
Deng
Z.
, and
Qian
K.
, “
Experimental and Modeling Research on Compression-Shear Behavior of Carbon Fiber Reinforced Coral Concrete
,”
Construction and Building Materials
301
(September
2021
): 124347, https://doi.org/10.1016/j.conbuildmat.2021.124347
40.
Halvaei
M.
,
Jamshidi
M.
,
Latifi
M.
, and
Ejtemaei
M.
, “
Experimental Investigation and Modelling of Flexural Properties of Carbon Textile Reinforced Concrete
,”
Construction and Building Materials
262
(November
2020
): 120877, https://doi.org/10.1016/j.conbuildmat.2020.120877
41.
Nahum
L.
,
Peled
A.
, and
Gal
E.
, “
The Flexural Performance of Structural Concrete Beams Reinforced with Carbon Textile Fabrics
,”
Composite Structures
239
(May
2020
): 111917, https://doi.org/10.1016/j.compstruct.2020.111917
42.
Sharei
E.
,
Scholzen
A.
,
Hegger
J.
, and
Chudoba
R.
, “
Structural Behavior of a Lightweight, Textile-Reinforced Concrete Barrel Vault Shell
,”
Composite Structures
171
(July
2017
):
505
514
, https://doi.org/10.1016/j.compstruct.2017.03.069
43.
Altalabani
D.
,
Bzeni
D. K. H.
, and
Linsel
S.
, “
Mechanical Properties and Load Deflection Relationship of Polypropylene Fiber Reinforced Self-Compacting Lightweight Concrete
,”
Construction and Building Materials
252
(August
2020
): 119084, https://doi.org/10.1016/j.conbuildmat.2020.119084
44.
Chen
L.
,
Li
P.
,
Guo
W.
,
Wang
R.
,
Zhang
D.
,
Gao
M.
, and
Peng
C.
, “
Experimental Investigation of the Dynamic Mechanical Properties of Polypropylene-Fiber-Reinforced Foamed Concrete at High Temperatures
,”
Polymers
15
, no. 
11
(June
2023
): 2544, https://doi.org/10.3390/polym15112544
45.
Yang
Y.
,
Zhou
Q.
, and
Deng
Y.
, “
The Reinforcement Attributes of Multi-scale Hybrid Fiber throughout the Uniaxial Compression of Ultra-Low-Weight Foamed Cement-Based Composites
,”
Construction and Building Materials
242
(May
2020
): 118184, https://doi.org/10.1016/j.conbuildmat.2020.118184
46.
Falliano
D.
,
De Domenico
D.
,
Ricciardi
G.
, and
Gugliandolo
E.
, “
Compressive and Flexural Strength of Fiber-Reinforced Foamed Concrete: Effect of Fiber Content, Curing Conditions and Dry Density
,”
Construction and Building Materials
198
(February
2019
):
479
493
, https://doi.org/10.1016/j.conbuildmat.2018.11.197
47.
Meskhi
B.
,
Beskopylny
A. N.
,
Stel’makh
S. A.
,
Shcherban’
E. M.
,
Mailyan
L. R.
,
Beskopylny
N.
,
Chernil’nik
A.
, and
El’shaeva
D.
, “
Insulation Foam Concrete Nanomodified with Microsilica and Reinforced with Polypropylene Fiber for the Improvement of Characteristics
,”
Polymers
14
, no. 
20
(October
2022
): 4401, https://doi.org/10.3390/polym14204401
48.
Abdul-Rahman
M.
,
Al-Attar
A. A.
,
Hamada
H. M.
, and
Tayeh
B.
, “
Microstructure and Structural Analysis of Polypropylene Fibre Reinforced Reactive Powder Concrete Beams Exposed to Elevated Temperature
,”
Journal of Building Engineering
29
(May
2020
): 101167, https://doi.org/10.1016/j.jobe.2019.101167
49.
Song
C.
,
Zhang
G.
,
Lu
Z.
,
Li
X.
, and
Zhao
X.
, “
Fire Resistance Tests on Polypropylene-Fiber-Reinforced Prestressed Concrete Box Bridge Girders
,”
Engineering Structures
282
(May
2023
): 115800, https://doi.org/10.1016/j.engstruct.2023.115800
50.
de Alencar Monteiro
V. M.
,
Lima
L. R.
, and
de Andrade Silva
F.
, “
On the Mechanical Behavior of Polypropylene, Steel and Hybrid Fiber Reinforced Self-Consolidating Concrete
,”
Construction and Building Materials
188
(November
2018
):
280
291
, https://doi.org/10.1016/j.conbuildmat.2018.08.103
51.
Badogiannis
E. G.
,
Christidis
K. I.
, and
Tzanetatos
G. E.
, “
Evaluation of the Mechanical Behavior of Pumice Lightweight Concrete Reinforced with Steel and Polypropylene Fibers
,”
Construction and Building Materials
196
(January
2019
):
443
456
, https://doi.org/10.1016/j.conbuildmat.2018.11.109
52.
Liu
X.
,
Wu
T.
,
Yang
X.
, and
Wei
H.
, “
Properties of Self-Compacting Lightweight Concrete Reinforced with Steel and Polypropylene Fibers
,”
Construction and Building Materials
226
(November
2019
):
388
398
, https://doi.org/10.1016/j.conbuildmat.2019.07.306
53.
Zhang
C.
,
Han
S.
, and
Hua
Y.
, “
Flexural Performance of Reinforced Self-Consolidating Concrete Beams Containing Hybrid Fibers
,”
Construction and Building Materials
174
(June
2018
):
11
23
, https://doi.org/10.1016/j.conbuildmat.2018.04.075
54.
Li
B.
,
Chi
Y.
,
Xu
L.
,
Shi
Y.
, and
Li
C.
, “
Experimental Investigation on the Flexural Behavior of Steel-Polypropylene Hybrid Fiber Reinforced Concrete
,”
Construction and Building Materials
191
(December
2018
):
80
94
, https://doi.org/10.1016/j.conbuildmat.2018.09.202
55.
Sadowska-Buraczewska
B.
,
Szafraniec
M.
,
Barnat-Hunek
D.
, and
Łagód
G.
, “
Flexural Behavior of Composite Concrete Slabs Made with Steel and Polypropylene Fibers Reinforced Concrete in the Compression Zone
,”
Materials
13
, no. 
16
(August
2020
): 3616, https://doi.org/10.3390/ma13163616
56.
Du
Y.
,
Zhang
M.
,
Zhou
F.
, and
Zhu
D.
, “
Experimental Study on Basalt Textile Reinforced Concrete under Uniaxial Tensile Loading
,”
Construction and Building Materials
138
(May
2017
):
88
100
, https://doi.org/10.1016/j.conbuildmat.2017.01.083
57.
Du
Y.
,
Zhang
X.
,
Zhou
F.
,
Zhu
D.
,
Zhang
M.
, and
Pan
W.
, “
Flexural Behavior of Basalt Textile-Reinforced Concrete
,”
Construction and Building Materials
183
(September
2018
):
7
21
, https://doi.org/10.1016/j.conbuildmat.2018.06.165
58.
Wu
H.
,
Qin
X.
,
Huang
X.
, and
Kaewunruen
S.
, “
Engineering, Mechanical and Dynamic Properties of Basalt Fiber Reinforced Concrete
,”
Materials
16
, no. 
2
(January
2023
): 623, https://doi.org/10.3390/ma16020623
59.
Yu
W.
,
Jin
L.
, and
Du
X.
, “
Experimental Study on Compression Failure Characteristics of Basalt Fiber-Reinforced Lightweight Aggregate Concrete: Influences of Strain Rate and Structural Size
,”
Cement and Concrete Composites
138
(April
2023
): 104985, https://doi.org/10.1016/j.cemconcomp.2023.104985
60.
Elgabbas
F.
,
Vincent
P.
,
Ahmed
E. A.
, and
Benmokrane
B.
, “
Experimental Testing of Basalt-Fiber-Reinforced Polymer Bars in Concrete Beams
,”
Composites Part B: Engineering
91
(April
2016
):
205
218
, https://doi.org/10.1016/j.compositesb.2016.01.045
61.
Li
L.
,
Hou
B.
,
Lu
Z.
, and
Liu
F.
, “
Fatigue Behaviour of Sea Sand Concrete Beams Reinforced with Basalt Fibre-Reinforced Polymer Bars
,”
Construction and Building Materials
179
(August
2018
):
160
171
, https://doi.org/10.1016/j.conbuildmat.2018.05.218
62.
Mai
G.
,
Li
L.
,
Chen
X.
,
Xiong
Z.
,
Liang
J.
,
Zou
X.
,
Qiu
Y.
,
Qiao
S.
,
Liang
D.
, and
Liu
F.
, “
Fatigue Performance of Basalt Fibre-Reinforced Polymer Bar-Reinforced Sea Sand Concrete Slabs
,”
Journal of Materials Research and Technology
22
(January–February
2023
):
706
727
, https://doi.org/10.1016/j.jmrt.2022.11.135
63.
Hamah Sor
N.
,
Ali
T. K. M.
,
Vali
K. S.
,
Ahmed
H. U.
,
Faraj
R. H.
,
Bheel
N.
, and
Mosavi
A.
, “
The Behavior of Sustainable Self-Compacting Concrete Reinforced with Low-Density Waste Polyethylene Fiber
,”
Materials Research Express
9
, no. 
3
(March
2022
): 035501, https://doi.org/10.1088/2053-1591/ac58e8
64.
Ji
Y.
and
Pei
Z.
, “
Investigation of Mechanical Properties of Ultra-High-performance Polyethylene-Fiber-Reinforced Recycled-Brick-Aggregate Concrete
,”
Polymers
15
, no. 
23
(December
2023
): 4573, https://doi.org/10.3390/polym15234573
65.
Zhao
X.
,
Cai
L.
,
Ji
X.
,
Zeng
W.
, and
Liu
J.
, “
Mechanical Properties of Polyethylene Fiber Reinforced Ultra High Performance Concrete (UHPC)
,”
Materials
15
, no. 
24
(December
2022
): 8734, https://doi.org/10.3390/ma15248734
66.
Wang
J.
,
Dai
Q.
,
Si
R.
, and
Guo
S.
, “
Investigation of Properties and Performances of Polyvinyl Alcohol (PVA) Fiber-Reinforced Rubber Concrete
,”
Construction and Building Materials
193
(December
2018
):
631
642
, https://doi.org/10.1016/j.conbuildmat.2018.11.002
67.
Sagar
B.
and
Sivakumar
M. V. N.
, “
Compressive Properties and Analytical Modelling for Stress-Strain Curves of Polyvinyl Alcohol Fiber Reinforced Concrete
,”
Construction and Building Materials
291
(July
2021
): 123192, https://doi.org/10.1016/j.conbuildmat.2021.123192
68.
Zhang
P.
,
Sun
Y.
,
Guo
Z.
,
Hong
J.
, and
Wang
F.
, “
Strengthening Mechanism of Polyvinyl Alcohol Fibers on Mechanical Properties of Geopolymer Concrete Subjected to a Wet-Hot-Salt Environment
,”
Polymer Testing
127
(October
2023
): 108199, https://doi.org/10.1016/j.polymertesting.2023.108199
69.
Martínez-Barrera
G.
,
Gencel
O.
, and
Martínez-López
M.
, “
Polyester Polymer Concrete Modified by Polyester Fibers and Gamma Rays
,”
Construction and Building Materials
356
(November
2022
): 129278, https://doi.org/10.1016/j.conbuildmat.2022.129278
70.
Wang
J.
,
Li
M.
,
Chen
J.
,
Zhao
Z.
,
Zhao
H.
,
Zhang
L.
, and
Ren
J.
, “
Investigation on Shrinkage Characteristics of Polyester-Fiber-Reinforced Cement-Stabilized Concrete Considering Fiber Length and Content
,”
Buildings
13
, no. 
4
(April
2023
): 1027, https://doi.org/10.3390/buildings13041027
71.
Zhou
A.
,
Qiu
Q.
,
Chow
C. L.
, and
Lau
D.
, “
Interfacial Performance of Aramid, Basalt and Carbon Fiber Reinforced Polymer Bonded Concrete Exposed to High Temperature
,”
Composites Part A: Applied Science and Manufacturing
131
(April
2020
): 105802, https://doi.org/10.1016/j.compositesa.2020.105802
72.
Li
Y.-F.
,
Wang
H.-F.
,
Syu
J.-Y.
,
Ramanathan
G. K.
,
Tsai
Y.-K.
, and
Lok
M. H.
. “
Mechanical Properties of Aramid/Carbon Hybrid Fiber-Reinforced Concrete
,”
Materials
14
, no. 
19
(October
2021
): 5881, https://doi.org/10.3390/ma14195881
73.
Morón
A.
,
Ferrández
D.
,
Saiz
P.
, and
Morón
C.
, “
Experimental Study with Cement Mortars Made with Recycled Concrete Aggregate and Reinforced with Aramid Fibers
,”
Applied Sciences
11
, no. 
17
(September
2021
): 7791, https://doi.org/10.3390/app11177791
74.
Amjad
H.
,
Khushnood
R. A.
, and
Ahmad
F.
, “
Enhanced Fracture and Durability Resilience Using Bio-intriggered Sisal Fibers in Concrete
,”
Journal of Building Engineering
76
(October
2023
): 107008, https://doi.org/10.1016/j.jobe.2023.107008
75.
da Gloria
M. Y. R.
and
Toledo Filho
R. D.
, “
Innovative Sandwich Panels Made of Wood Bio-concrete and Sisal Fiber Reinforced Cement Composites
,”
Construction and Building Materials
272
(February
2021
): 121636, https://doi.org/10.1016/j.conbuildmat.2020.121636
76.
Paritala
S.
,
Singaram
K. K.
,
Bathina
I.
,
Khan
M. A.
, and
Jyosyula
S. K. R.
, “
Rheology and Pumpability of Mix Suitable for Extrusion-Based Concrete 3D Printing – A Review
,”
Construction and Building Materials
402
(October
2023
): 132962, https://doi.org/10.1016/j.conbuildmat.2023.132962
77.
Arunothayan
A. R.
,
Nematollahi
B.
,
Khayat
K. H.
,
Ramesh
A.
, and
Sanjayan
J. G.
, “
Rheological Characterization of Ultra-high Performance Concrete for 3D Printing
,”
Cement and Concrete Composites
136
(February
2023
): 104854, https://doi.org/10.1016/j.cemconcomp.2022.104854
78.
Tran
M. V.
,
Cu
Y. T. H.
, and
Le
C. V. H.
, “
Rheology and Shrinkage of Concrete Using Polypropylene Fiber for 3D Concrete Printing
,”
Journal of Building Engineering
44
(December
2021
): 103400, https://doi.org/10.1016/j.jobe.2021.103400
79.
Ma
G.
,
Li
Z.
, and
Wang
L.
, “
Printable Properties of Cementitious Material Containing Copper Tailings for Extrusion Based 3D Printing
,”
Construction and Building Materials
162
(February
2018
):
613
627
, https://doi.org/10.1016/j.conbuildmat.2017.12.051
80.
Yang
Y.
,
Wu
C.
,
Liu
Z.
,
Wang
H.
, and
Ren
Q.
, “
Mechanical Anisotropy of Ultra-High Performance Fibre-Reinforced Concrete for 3D Printing
,”
Cement and Concrete Composites
125
(January
2022
): 104310, https://doi.org/10.1016/j.cemconcomp.2021.104310
81.
Ibrahim
K. A.
,
van Zijl
G. P. A. G.
, and
Babafemi
A. J.
, “
Influence of Limestone Calcined Clay Cement on Properties of 3D Printed Concrete for Sustainable Construction
,”
Journal of Building Engineering
69
(June
2023
): 106186, https://doi.org/10.1016/j.jobe.2023.106186
82.
Rajeev
P.
,
Ramesh
A.
,
Navaratnam
S.
, and
Sanjayan
J.
, “
Using Fibre Recovered from Face Mask Waste to Improve Printability in 3D Concrete Printing
,”
Cement and Concrete Composites
139
(May
2023
): 105047, https://doi.org/10.1016/j.cemconcomp.2023.105047
83.
Bong
S. H.
,
Nematollahi
B.
,
Nerella
V. N.
, and
Mechtcherine
V.
, “
Method of Formulating 3D-Printable Strain-Hardening Alkali-Activated Composites for Additive Construction
,”
Cement and Concrete Composites
134
(November
2022
): 104780, https://doi.org/10.1016/j.cemconcomp.2022.104780
84.
Zhu
B.
,
Pan
J.
,
Nematollahi
B.
,
Zhou
Z.
,
Zhang
Y.
, and
Sanjayan
J.
, “
Development of 3D Printable Engineered Cementitious Composites with Ultra-high Tensile Ductility for Digital Construction
,”
Materials & Design
181
(November
2019
): 108088, https://doi.org/10.1016/j.matdes.2019.108088
85.
Sun
X.
,
Zhou
J.
,
Wang
Q.
,
Shi
J.
, and
Wang
H.
, “
PVA Fibre Reinforced High-Strength Cementitious Composite for 3D Printing: Mechanical Properties and Durability
,”
Additive Manufacturing
49
(January
2022
): 102500, https://doi.org/10.1016/j.addma.2021.102500
86.
Pham
L.
,
Tran
P.
, and
Sanjayan
J.
, “
Steel Fibres Reinforced 3D Printed Concrete: Influence of Fibre Sizes on Mechanical Performance
,”
Construction and Building Materials
250
(July
2020
): 118785, https://doi.org/10.1016/j.conbuildmat.2020.118785
87.
Zhang
Y.
,
Zhang
Y.
,
She
W.
,
Yang
L.
,
Liu
G.
, and
Yang
Y.
, “
Rheological and Harden Properties of the High-Thixotropy 3D Printing Concrete
,”
Construction and Building Materials
201
(March
2019
):
278
285
, https://doi.org/10.1016/j.conbuildmat.2018.12.061
88.
Zafar
M. S.
,
Bakhshi
A.
, and
Hojati
M.
, “
Printability and Shape Fidelity Evaluation of Self-Reinforced Engineered Cementitious Composites
,”
Construction and Building Materials
408
(December
2023
): 133676, https://doi.org/10.1016/j.conbuildmat.2023.133676
89.
Liu
C.
,
Wang
X.
,
Chen
Y.
,
Zhang
C.
,
Ma
L.
,
Deng
Z.
,
Chen
C.
,
Zhang
Y.
,
Pan
J.
, and
Banthia
N.
, “
Influence of Hydroxypropyl Methylcellulose and Silica Fume on Stability, Rheological Properties, and Printability of 3D Printing Foam Concrete
,”
Cement and Concrete Composites
122
(September
2021
): 104158, https://doi.org/10.1016/j.cemconcomp.2021.104158
90.
Soltan
D. G.
and
Li
V. C.
, “
A Self-Reinforced Cementitious Composite for Building-Scale 3D Printing
,”
Cement and Concrete Composites
90
(July
2018
):
1
13
, https://doi.org/10.1016/j.cemconcomp.2018.03.017
91.
Weng
Y.
,
Lu
B.
,
Li
M.
,
Liu
Z.
,
Tan
M. J.
, and
Qian
S.
, “
Empirical Models to Predict Rheological Properties of Fiber Reinforced Cementitious Composites for 3D Printing
,”
Construction and Building Materials
189
(November
2018
):
676
685
, https://doi.org/10.1016/j.conbuildmat.2018.09.039
92.
Zhao
Y.
,
Yang
G.
,
Zhu
L.
,
Ding
Y.
,
Guan
X.
,
Wu
X.
, and
Yang
Z.
, “
Effects of Rheological Properties and Printing Speed on Molding Accuracy of 3D Printing Basalt Fiber Cementitious Materials
,”
Journal of Materials Research and Technology
21
(November–December
2022
):
3462
3475
, https://doi.org/10.1016/j.jmrt.2022.10.124
93.
Zhang
Y.
,
Zhu
Y.
,
Ren
Q.
,
He
B.
,
Jiang
Z.
,
Van Tittelboom
K.
, and
De Schutter
G.
, “
Comparison of Printability and Mechanical Properties of Rigid and Flexible Fiber-Reinforced 3D Printed Cement-Based Materials
,”
Construction and Building Materials
400
(October
2023
): 132750, https://doi.org/10.1016/j.conbuildmat.2023.132750
94.
Arunothayan
A. R.
,
Nematollahi
B.
,
Ranade
R.
,
Bong
S. H.
, and
Sanjayan
J.
, “
Development of 3D-Printable Ultra-High Performance Fiber-Reinforced Concrete for Digital Construction
,”
Construction and Building Materials
257
(October
2020
): 119546, https://doi.org/10.1016/j.conbuildmat.2020.119546
95.
Chu
S. H.
,
Li
L. G.
, and
Kwan
A. K. H.
, “
Development of Extrudable High Strength Fiber Reinforced Concrete Incorporating Nano Calcium Carbonate
,”
Additive Manufacturing
37
(January
2021
): 101617, https://doi.org/10.1016/j.addma.2020.101617
96.
Li
H.
,
Addai-Nimoh
A.
,
Kreiger
E.
, and
Khayat
K. H.
, “
Methodology to Design Eco-friendly Fiber-Reinforced Concrete for 3D Printing
,”
Cement and Concrete Composites
147
(March
2024
): 105415, https://doi.org/10.1016/j.cemconcomp.2023.105415
97.
Lee
K.-W.
,
Lee
H.-J.
, and
Choi
M.-S.
, “
Correlation between Thixotropic Behavior and Buildability for 3D Concrete Printing
,”
Construction and Building Materials
347
(September
2022
): 128498, https://doi.org/10.1016/j.conbuildmat.2022.128498
98.
Panda
B.
,
Ruan
S.
,
Unluer
C.
, and
Tan
M. J.
, “
Improving the 3D Printability of High Volume Fly Ash Mixtures via the Use of Nano Attapulgite Clay
,”
Composites Part B: Engineering
165
(May
2019
):
75
83
, https://doi.org/10.1016/j.compositesb.2018.11.109
99.
Jiang
Q.
,
Liu
Q.
,
Wu
S.
,
Zheng
H.
, and
Sun
W.
, “
Modification Effect of Nanosilica and Polypropylene Fiber for Extrusion-Based 3D Printing Concrete: Printability and Mechanical Anisotropy
,”
Additive Manufacturing
56
(August
2022
): 102944, https://doi.org/10.1016/j.addma.2022.102944
100.
Panda
B.
,
Chandra Paul
S.
, and
Jen Tan
M.
, “
Anisotropic Mechanical Performance of 3D Printed Fiber Reinforced Sustainable Construction Material
,”
Materials Letters
209
(December
2017
):
146
149
, https://doi.org/10.1016/j.matlet.2017.07.123
101.
Ding
T.
,
Xiao
J.
,
Zou
S.
, and
Yu
J.
, “
Flexural Properties of 3D Printed Fibre-Reinforced Concrete with Recycled Sand
,”
Construction and Building Materials
288
(June
2021
): 123077, https://doi.org/10.1016/j.conbuildmat.2021.123077
102.
Chen
W.
,
Pan
J.
,
Zhu
B.
,
Ma
X.
,
Zhang
Y.
,
Chen
Y.
,
Li
X.
,
Meng
L.
, and
Cai
J.
, “
Improving Mechanical Properties of 3D Printable ‘One-Part’ Geopolymer Concrete with Steel Fiber Reinforcement
,”
Journal of Building Engineering
75
(September
2023
): 107077, https://doi.org/10.1016/j.jobe.2023.107077
103.
Kumar Devalla
T.
,
Srinivas
D.
,
Panda
B.
, and
Sitharam
T. G.
, “
Investigation on the Flexural and Tensile Performance of 3D Printable Cementitious Mixtures Considering the Effect of Fiber Distribution
,”
Materials Today: Proceedings.
Published ahead of print, April 18,
2023
, https://doi.org/10.1016/j.matpr.2023.04.081
104.
van den Heever
M.
,
du Plessis
A.
,
Kruger
J.
, and
van Zijl
G.
, “
Evaluating the Effects of Porosity on the Mechanical Properties of Extrusion-Based 3D Printed Concrete
,”
Cement and Concrete Research
153
(March
2022
): 106695, https://doi.org/10.1016/j.cemconres.2021.106695
105.
Seo
E.-A.
,
Kim
W.-W.
,
Kim
S.-W.
,
Kwon
H.-K.
, and
Lee
H.-J.
, “
Mechanical Properties of 3D Printed Concrete with Coarse Aggregates and Polypropylene Fiber in the Air and Underwater Environment
,”
Construction and Building Materials
378
(May
2023
): 131184, https://doi.org/10.1016/j.conbuildmat.2023.131184
106.
Li
H.
,
Wei
J.
, and
Khayat
K. H.
, “
3D Printing of Fiber-Reinforced Calcined Clay-Limestone-Based Cementitious Materials: From Mixture Design to Printability Evaluation
,”
Buildings
14
, no. 
6
(June
2024
): 1666, https://doi.org/10.3390/buildings14061666
107.
Ding
T.
,
Xiao
J.
,
Zou
S.
, and
Zhou
X.
, “
Anisotropic Behavior in Bending of 3D Printed Concrete Reinforced with Fibers
,”
Composite Structures
254
(December
2020
): 112808, https://doi.org/10.1016/j.compstruct.2020.112808
108.
Du
L.
,
Zhou
J.
,
Lai
J.
,
Wu
K.
,
Yin
X.
, and
He
Y.
, “
Effect of Pore Structure on Durability and Mechanical Performance of 3D Printed Concrete
,”
Construction and Building Materials
400
(October
2023
): 132581, https://doi.org/10.1016/j.conbuildmat.2023.132581
109.
Christ
S.
,
Schnabel
M.
,
Vorndran
E.
,
Groll
J.
, and
Gbureck
U.
, “
Fiber Reinforcement during 3D Printing
,”
Materials Letters
139
(January
2015
):
165
168
, https://doi.org/10.1016/j.matlet.2014.10.065
110.
Duong
T. Q.
,
Korolev
E.
, and
Inozemtcev
A.
, “
Selection of Reinforcing Fiber for High-Strength Lightweight Concrete for 3D-Printing
,”
IOP Conference Series: Materials Science and Engineering
1030
(
2021
): 012007, https://doi.org/10.1088/1757-899X/1030/1/012007
111.
Sun
J.
,
Aslani
F.
,
Lu
J.
,
Wang
L.
,
Huang
Y.
, and
Ma
G.
, “
Fibre-Reinforced Lightweight Engineered Cementitious Composites for 3D Concrete Printing
,”
Ceramics International
47
, no. 
19
(October
2021
):
27107
27121
, https://doi.org/10.1016/j.ceramint.2021.06.124
112.
Rui
A.
,
Wang
L.
,
Lin
W.
, and
Ma
G.
, “
Experimental Study on Damage Anisotropy of 3D-Printed Concrete Exposed to Sulfate Attack
,”
Construction and Building Materials
407
(December
2023
): 133590, https://doi.org/10.1016/j.conbuildmat.2023.133590
113.
Reinold
J.
,
Gudžulić
V.
, and
Meschke
G.
, “
Computational Modeling of Fiber Orientation during 3D-Concrete-Printing
,”
Computational Mechanics
71
, no. 
6
(June
2023
):
1205
1225
, https://doi.org/10.1007/s00466-023-02304-z
114.
Wang
X. K.
,
Wang
S.
,
Jia
L.
,
Li
J.
,
Liu
P.
,
Pan
J.
, and
Zhang
Y.
, “
Application of 3D Printing Concrete Technology in COVID-19 Quarantine Shelters
” (
in Chinese
),
Concrete and Cement Products
,
2020
, no. 
04
(April
2020
): 1–4+13, https://doi.org/10.19761/j.1000-4637.2020.04.001.05
115.
Bhushan Jindal
B.
and
Jangra
P.
, “
3D Printed Concrete: A Comprehensive Review of Raw Material’s Properties, Synthesis, Performance, and Potential Field Applications
,”
Construction and Building Materials
387
(July
2023
): 131614, https://doi.org/10.1016/j.conbuildmat.2023.131614
116.
Zhang
J.
,
Wang
J.
,
Dong
S.
,
Yu
X.
, and
Han
B.
, “
A Review of the Current Progress and Application of 3D Printed Concrete
,”
Composites Part A: Applied Science and Manufacturing
125
(October
2019
): 105533, https://doi.org/10.1016/j.compositesa.2019.105533
117.
Buchanan
C.
and
Gardner
L.
, “
Metal 3D Printing in Construction: A Review of Methods, Research, Applications, Opportunities and Challenges
,”
Engineering Structures
180
(February
2019
):
332
348
, https://doi.org/10.1016/j.engstruct.2018.11.045
118.
Ma
W. G.
,
Zhou
B. Y.
,
Wang
L.
, “
Plant fiber reinforced geopolymer for 3D printing of Zhaozhou Bridge and its preparation method
.”
Chinese Patent
CN109400031A, issued 1 March
2019
.
119.
Xu
Ł.
, “
The World’s Largest 3D-Printed Concrete Pedestrian Bridge
,”
Architectural Technique
Issue 02 (February
2019
):
6
9
.
120.
Shen
L.
,
Zhang
Q. F.
, and
Yan
J. L.
, “
Research on Construction Scheme of Prefabricated Wave-Dissipating Blocks Based on Cement-Based 3D Printing Technology
,”
Building Structure
51
, no. 
S2
(December
2021
):
1795
1799
.
This content is only available via PDF.
You do not currently have access to this content.