The present study explores the thermofluid characteristics of a corrosion-resistant, thermally enhanced polymer composite, seawater-methane heat exchanger module for use in the liquefaction of natural gas on offshore platforms. Several metrics, including the heat transfer rate, the mass-specific heat transfer rate, and the total coefficient of performance (COPT), are used to compare the thermal performance of polymer composites having a range of thermal conductivities with that of corrosion-resistant metals. For operating conditions considered typical of the natural gas liquefaction industry in the Persian Gulf, a 10 W/m K polymer composite is found to provide nearly identical heat transfer rate to that of a corrosion-resistant titanium heat exchanger, almost 50% higher mass-specific heat transfer than for titanium (at 200 W pumping power), and COPT values approximately twice that of a least-material titanium heat exchanger. The results contribute to establishing the viability of using polymer composites for gas-liquid heat exchanger applications involving seawater and other corrosive fluids.

1.
Luckow
,
P.
,
Bar-Cohen
,
A.
,
Rodgers
,
P.
, and
Cevallos
,
J.
, 2008, “
Energy Efficient Polymers for Gas-Liquid Heat Exchangers
,”
ASME Second International Conference on Energy Sustainability
, Jacksonville, FL.
2.
Kern
,
D.
, and
Kraus
,
A.
, 1992,
Extended Surface Heat Transfer
,
McGraw-Hill
,
New York
.
3.
Iyengar
,
M.
, and
Bar-Cohen
,
A.
, 1998, “
Least-Material Optimization of Vertical Pin-Fin, Plate-Fin, and Triangular-Fin Heat Sinks in Natural Convective Heat Transfer
,”
The Sixth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems ITHERM’98
, pp.
295
302
.
4.
Bar-Cohen
,
A.
,
Bahadur
,
R.
, and
Madhusudan
,
I.
, 2006, “
Least-Energy Optimization of Air-Cooled Heat Sinks for Sustainability-Theory, Geometry and Material Selection
,”
Energy
0360-5442,
31
, pp.
579
619
.
5.
Bar-Cohen
,
A.
, and
Iyengar
,
M.
, 2002, “
Design and Optimization of Air-Cooled Heat Sinks for Sustainable Development
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
, pp.
584
591
.
6.
Bejan
,
A.
, 1982,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
7.
Wang
,
L.
,
Sundén
,
B.
, and
Manglik
,
R. M.
, 2007,
Plate Heat Exchangers: Design, Applications and Performance
,
WIT Press
,
Billerica, MA
.
8.
Kampe
,
S. L.
, 2001, “
Incorporating Green Engineering in Materials Selection and Design
,”
Proceedings of the 2001 Green Engineering Conference: Sustainable and Environmentally-Conscious Engineering
, Roanoke, VA.
9.
Shindo
,
N.
, 2002, Energy and Environmental Applications of Carbon Materials.
10.
Japan Aluminum Association
, 1999, Summary of Inventory Data, LCA (Life Cycle Assessment) Committee Report.
11.
Hart
,
G. K.
,
Lee
,
C. -O.
, and
Latour
,
S. R.
, 1979,
Development of Plastic Heat Exchangers for Ocean Thermal Energy Conversion
,
DSS Engineers, Inc.
,
Fort Lauderdale, FL
.
12.
Zaheed
,
L.
, and
Jachuck
,
R. J. J.
, 2004, “
Review of Polymer Compact Heat Exchangers, With Special Emphasis on a Polymer Film Unit
,”
Appl. Therm. Eng.
1359-4311,
24
(
16
), pp.
2323
2358
.
13.
Bahadur
,
R.
, and
Bar-Cohen
,
A.
, 2007, “
Orthotropic Thermal Conductivity Effect on Cylindrical Pin Fin Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
1155
1162
.
14.
Incropera
,
F.
, and
DeWitt
,
D.
, 2002,
Introduction to Heat Transfer
,
Wiley
,
New York
.
15.
Kays
,
W. M.
, and
London
,
A. L.
, 1984,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
16.
ADGAS
, 2007, personal communication.
17.
19.
Shah
,
R. K.
, and
Bhatti
,
M. S.
, 1987, “
Laminar Convective Heat Transfer in Ducts
,”
Handbook of Single-Phase Convective Heat Transfer
,
Wiley
,
New York
, pp.
3.1
3.137
.
20.
Gnielinski
,
V.
, 1976, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng
,
16
(
2
), pp.
359
368
.
21.
Kays
,
W. M.
, 1955, “
Numerical Solutions for Laminar-Flow Heat Transfer in Circular Tubes
,”
Trans. ASME
0097-6822,
77
, pp.
1265
1274
.
22.
Pethukhov
,
B. S.
, 1970,
Advances in Heat Transfer
,
Academic
,
New York
.
23.
Harper
,
D.
, and
Brown
,
W.
, 1922, “
Mathematical Equations for Heat Conduction in the Fins of Air-Cooled Engines
,” NACA Report No. 158.
24.
Schneider
,
P. J.
, 1955,
Conduction Heat Transfer
(
Addison-Wesley Series in Mechanical Engineering
),
Addison-Wesley
,
Cambridge, MA
.
25.
Bar-Cohen
,
A.
, and
Jelinek
,
M.
, 1985, “
Optimum Arrays of Longitudinal, Rectangular Fins in Corrective Heat Transfer
,”
Heat Transfer Eng.
0145-7632,
6
, pp.
68
78
.
29.
Zweben
,
C.
, 2004, “
Emerging High-Volume Applications for Advanced Thermally Conductive Materials
,”
Proceedings of the SAMPE 2004
, Long Beach, CA.
30.
Suzuki
,
T.
, and
Takahashi
,
J.
, 2005, “
Prediction of Energy Intensity of Carbon Fiber Reinforced Plastics for Mass-Produced Passenger Cars
,”
Ninth Japan International SAMPE Symposium JISSE-9
, Tokyo, Japan.
31.
Nielsen
,
L. E.
, 1974, “
The Thermal and Electrical Conductivity of Two-Phase Systems
,”
Ind. Eng. Chem. Fundam.
0196-4313,
13
(
1
), pp.
17
20
.
32.
Bahadur
,
R.
, 2005, “
Characterization, modeling, and optimization of polymer composite pin fins
,” Ph.D. thesis, University of Maryland, College Park.
33.
Iyengar
,
M.
, and
Bar-Cohen
,
A.
, 2001, “
Design for Manufacturability of SISE Parallel Plate Forcedconvection Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
(
2
), pp.
150
158
.
You do not currently have access to this content.