Direct steam generation (DSG) in parabolic trough collector (PTC) is an efficient and feasible option for solar thermal power generation as well as for industrial process heat supply. The two-phase flow inside the absorber tube complicates the thermo-hydraulic modeling of the DSG process. In the present work, a thermo-hydraulic model is developed for the DSG process in the receiver of a solar PTC. The two-phase flow in the evaporating section is analyzed using two empirical correlations of heat transfer and pressure drop, and a flow map integrated heat transfer and pressure drop model. The results of the thermo-hydraulic simulation using different two-phase heat transfer and pressure drop correlations were compared with experimental data from the direct solar steam (DISS) test facility at Plataforma Solar de Almeria (PSA), Spain. The test facility has collectors with aperture width of 5.76 m, focal length of 1.71 m, and absorber tube with inner and outer diameters of 50 mm and 70 mm, respectively. The simulation results using the aforementioned two-phase models were found to be satisfactory and consistent within the experimental uncertainty. The flow map based heat transfer model predicted the mean fluid temperature with root-mean-square error (RMSE) of 0.45% and 1.40%, for the cases considered in the present study. Whereas the flow pattern map based pressure drop model predicts the variation of pressure along the length of the collector with RMSE of 0.5% and 0.14%. Moreover, the flow pattern map based model predicts the different flow regimes paving a better understanding of the two-phase flow and helps in identifying the critical sections along the collector length.

References

1.
Zarza
,
E.
,
Valenzuela
,
L.
,
León
,
J.
,
Weyers
,
H.-D.
,
Eickhoff
,
M.
,
Eck
,
M.
, and
Hennecke
,
K.
,
2002
, “
The DISS Project: Direct Steam Generation in Parabolic Trough Systems. Operation and Maintenance Experience and Update on Project Status
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
126
133
.
2.
Lobón
,
D. H.
,
Baglietto
,
E.
,
Valenzuela
,
L.
, and
Zarza
,
E.
,
2014
, “
Modeling Direct Steam Generation in Solar Collectors With Multiphase {CFD}
,”
Appl. Energy
,
113
, pp.
1338
1348
.
3.
Lobón
,
D. H.
,
Valenzuela
,
L.
, and
Baglietto
,
E.
,
2014
, “
Modeling the Dynamics of the Multiphase Fluid in the Parabolic-Trough Solar Steam Generating Systems
,”
Energy Convers. Manage.
,
78
, pp.
393
404
.
4.
Eck
,
M.
, and
Steinmann
,
W.-D.
,
2002
, “
Direct Steam Generation in Parabolic Troughs: First Results of the DISS Project
,”
ASME J. Sol. Energy Eng.
,
124
(
2
), pp.
134
139
.
5.
Fraidenraich
,
N.
,
Oliveira
,
C.
,
Vieira da Cunha
,
A. F.
,
Gordon
,
J. M.
, and
Vilela
,
O. C.
,
2013
, “
Analytical Modeling of Direct Steam Generation Solar Power Plants
,”
Sol. Energy
,
98
, pp.
511
522
.
6.
Yan
,
Q.
,
Hu
,
E.
,
Yang
,
Y.
, and
Zhai
,
R.
,
2010
, “
Dynamic Modeling and Simulation of a Solar Direct Steam-Generating System
,”
Int. J. Energy Res.
,
34
(
15
), pp.
1341
1355
.
7.
Guo
,
S.
,
Liu
,
D.
,
Chu
,
Y.
,
Chen
,
X.
,
Shen
,
B.
,
Xu
,
C.
, and
Zhou
,
L.
,
2016
, “
Real-Time Dynamic Analysis for Complete Loop of Direct Steam Generation Solar Trough Collector
,”
Energy Convers. Manage.
,
126
, pp.
573
580
.
8.
Xu
,
R.
, and
Wiesner
,
T. F.
,
2015
, “
Closed-Form Modeling of Direct Steam Generation in a Parabolic Trough Solar Receiver
,”
Energy
,
79
, pp.
163
176
.
9.
Martínez
,
I.
, and
Almanza
,
R.
,
2007
, “
Experimental and Theoretical Analysis of Annular Two-Phase Flow Regimen in Direct Steam Generation for a Low-Power System
,”
Sol. Energy
,
81
(
2
), pp.
216
226
.
10.
Odeh
,
S. D.
,
Behnia
,
M.
, and
Morrison
,
G. L.
,
2000
, “
Hydrodynamic Analysis of Direct Steam Generation Solar Collectors
,”
ASME J. Sol. Energy Eng.
,
122
(
1
), pp.
14
22
.
11.
Eck
,
M.
, and
Steinmann
,
W.-D.
,
2005
, “
Modelling and Design of Direct Solar Steam Generating Collector Fields
,”
ASME J. Sol. Energy Eng.
,
127
(
3
), pp.
371
380
.
12.
Sun
,
J.
,
Liu
,
Q.
, and
Hong
,
H.
,
2015
, “
Numerical Study of Parabolic-Trough Direct Steam Generation Loop in Recirculation Mode: Characteristics, Performance and General Operation Strategy
,”
Energy Convers. Manage.
,
96
, pp.
287
302
.
13.
Elsafi
,
A. M.
,
2015
, “
On Thermo-Hydraulic Modeling of Direct Steam Generation
,”
Sol. Energy
,
120
, pp.
636
650
.
14.
Wojtan
,
L.
,
Ursenbacher
,
T.
, and
Thome
,
J. R.
,
2005
, “
Investigation of Flow Boiling in Horizontal Tubes—Part I: A New Diabatic Two-Phase Flow Pattern Map
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2955
2969
.
15.
Wojtan
,
L.
,
Ursenbacher
,
T.
, and
Thome
,
J. R.
,
2005
, “
Investigation of Flow Boiling in Horizontal Tubes—Part II: Development of a New Heat Transfer Model for Stratified-Wavy, Dryout and Mist Flow Regimes
,”
Int. J. Heat Mass Transfer
,
48
(
14
), pp.
2970
2985
.
16.
Zukauskas
,
A.
, and
Ziugzda
,
J.
,
1985
,
Heat Transfer of a Cylinder in Crossflow
,
Hemisphere Publication
,
Washington, DC
, p.
219
.
17.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
18.
Gungor
,
K. E.
, and
Winterton
,
R. H. S.
,
1986
, “
A General Correlation for Flow Boiling in Tubes and Annuli
,”
Int. J. Heat Mass Transfer
,
29
(
3
), pp.
351
358
.
19.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
(
1
), pp.
39
48
.http://dns2.asia.edu.tw/~ysho/YSHO-english/1000%20CE/PDF/Che%20Eng%20Pro45,%2039.pdf
20.
Shah
,
M. M.
,
1982
, “
Chart Correlation for Saturated Boiling Heat Transfer: Equation and Further Study
,”
ASHRAE Trans.
,
88
, pp.
185
196
.https://www.techstreet.com/ashrae/standards/ho-2673-chart-correlation-for-saturated-boiling-heat-transfer-equations-and-further-study?product_id=1838630
21.
Grönnerud
,
R.
,
1972
, “
Investigation of Liquid Hold-Up, Flow-Resistance and Heat Transfer in Circulation Type Evaporators—Part IV: Two-Phase Flow Resistance in Boiling Refrigerants
,”
Bull. l'Inst. Du Froid, Annex.
,
1
, pp. 127–138.
22.
Moreno Quibén
,
J.
, and
Thome
,
J. R.
,
2007
, “
Flow Pattern Based Two-Phase Frictional Pressure Drop Model for Horizontal Tubes—Part I: Diabatic and Adiabatic Experimental Study
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
1049
1059
.
23.
Moreno Quibén
,
J.
, and
Thome
,
J. R.
,
2007
, “
Flow Pattern Based Two-Phase Frictional Pressure Drop Model for Horizontal Tubes—Part II: New Phenomenological Model
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
1060
1072
.
24.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
,
1998
, “
Flow Boiling in Horizontal Tubes—Part 1: Development of a Diabatic Two-Phase Flow Pattern Map
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
140
147
.
25.
Zürcher
,
O.
,
Favrat
,
D.
, and
Thome
,
J. R.
,
2002
, “
Development of a Diabatic Two-Phase Flow Pattern Map for Horizontal Flow Boiling
,”
Int. J. Heat Mass Transfer
,
45
(
2
), pp.
291
301
.
26.
Thome
,
J. R.
, and
Hajal
,
J. E.
,
2003
, “
Two-Phase Flow Pattern Map for Evaporation in Horizontal Tubes: Latest Version
,”
Heat Transfer Eng.
,
24
(
6
), pp.
3
10
.
27.
Biberg
,
D.
,
1999
, “
Explicit Approximation for the Wetted Angle in Two-Phase Stratified Pipe Flow
,”
Can. J. Chem. Eng.
,
77
(
6
), pp.
1221
1224
.
28.
Bonilla
,
J.
,
Yebra
,
L. J.
,
Dormido
,
S.
, and
Zarza
,
E.
,
2012
, “
Parabolic-Trough Solar Thermal Power Plant Simulation Scheme, Multi-Objective Genetic Algorithm Calibration and Validation
,”
Sol. Energy
,
86
, pp.
531
540
.
You do not currently have access to this content.