Numerical results on laminar mixed convective heat transfer phenomenon between a confined circular cylinder and shear-thinning type nanofluids are presented. The cylinder is placed horizontally in a confined channel through which nanofluids flow vertically upward. The effect of buoyancy is same as the direction of the flow. Because of existence of mixed convection, governing continuity, momentum, and energy equations are simultaneously solved within the limitations of Boussinesq approximation. The ranges of parameters considered are: volume fraction of nanoparticles, ϕ = 0.005–0.045; Reynolds number, Re = 1–40; Richardson number, Ri = 0–40; and confinement ratio of circular cylinder, λ = 0.0625–0.5. Finally, the effects of these parameters on the streamlines, isotherm contours, individual and total drag coefficients, and local and average Nusselt numbers are thoroughly delineated. The individual and total drag coefficients decrease with the increasing both ϕ and Re; and/or with the decreasing both Ri and λ. The rate of heat transfer increases with the increasing Re, ϕ, Ri, and λ; however, at Re = 30–40, when ϕ > 0.005 and Ri < 2, the average Nusselt number decreases with the increasing Richardson number. Finally, correlations for the total drag coefficient and average Nusselt number are proposed as functions of pertinent dimensionless parameters on the basis of present numerical results.

References

1.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
,
1999
, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
,
121
(
2
), pp.
280
289
.
2.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
,
2004
, “
Thermal Transport in Nanofluids
,”
Annu. Rev. Mater. Res.
,
34
(
1
), pp.
219
246
.
3.
Choi
,
S. U. S.
, and
Eastman
,
J. A.
,
1995
, “Enhancing Thermal Conductivity of Fluids With Nanoparticles,” International Mechanical Engineering Congress and Exhibition, San Francisco, CA, Nov. 12–17.
4.
Kishore
,
N.
, and
Gu
,
S.
,
2011
, “
Momentum and Heat Transfer Phenomena of Spheroid Particles at Moderate Reynolds and Prandtl Numbers
,”
Int. J. Heat Mass Transfer
,
54
(
11–12
), pp.
2595
2601
.
5.
Reddy
,
C. R.
, and
Kishore
,
N.
,
2014
, “
Momentum and Heat Transfer Phenomena of Confined Spheroid Particles in Power-Law Liquids
,”
Ind. Eng. Chem. Res.
,
53
(
2
), pp.
989
998
.
6.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dalal
,
A.
,
2013
, “
Buoyancy Driven Flow and Heat Transfer of Nanofluids Past a Square Cylinder in Vertically Upward Flow
,”
Int. J. Heat Mass Transfer
,
59
(
1
), pp.
433
450
.
7.
Abu-Nada
,
E.
,
Ziyad
,
K.
,
Saleh
,
M.
, and
Ali
,
Y.
,
2008
, “
Heat Transfer Enhancement in Combined Convection Around a Horizontal Cylinder Using Nanofluids
,”
ASME J. Heat Transfer
,
130
(
8
), p.
084505
.
8.
Cianfrini
,
M.
,
Corcione
,
M.
, and
Quintino
,
A.
,
2011
, “
Natural Convection Heat Transfer of Nanofluids in Annular Spaces Between Horizontal Concentric Cylinders
,”
Appl. Therm. Eng.
,
31
(
17–18
), pp.
4055
4063
.
9.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Dalal
,
A.
,
2012
, “
Analysis of Entropy Generation During Mixed Convective Heat Transfer of Nanofluids Past a Square Cylinder in Vertically Upward Flow
,”
ASME J. Heat Transfer
,
134
(
12
), p.
122501
.
10.
Ho
,
C. J.
,
Chen
,
M. W.
, and
Li
,
Z. W.
,
2008
, “
Numerical Simulation of Natural Convection of Nanofluid in a Square Enclosure: Effects Due to Uncertainties of Viscosity and Thermal Conductivity
,”
Int. J. Heat Mass Transfer
,
51
(
17–18
), pp.
4506
4516
.
11.
Heris
,
S. Z.
,
Etemad
,
S. G.
, and
Esfahany
,
M. N.
,
2006
, “
Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
33
(
4
), pp.
529
535
.
12.
Tseng
,
W. J.
, and
Lin
,
K. C.
,
2003
, “
Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions
,”
Mater. Sci. Eng. A
,
355
(
1–2
), pp.
186
192
.
13.
Pastoriza-Gallego
,
M. J.
,
Lugo
,
L.
,
Legido
,
J. L.
, and
Pineiro
,
M. M.
,
2011
, “
Rheological Non-Newtonian Behaviour of Ethylene Glycol-Based Fe2O3 Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
560
.
14.
Wang
,
X.-Q.
, and
Mujumdar
,
A. S.
,
2007
, “
Heat Transfer Characteristics of Nanofluids: A Review
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
1
19
.
15.
Kakaç
,
S.
, and
Pramuanjaroenkij
,
A.
,
2009
, “
Review of Convective Heat Transfer Enhancement With Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3187
3196
.
16.
Hussien
,
A. A.
,
Abdullah
,
M. Z.
, and
Al-Nimr
,
M. A.
,
2016
, “
Single-Phase Heat Transfer Enhancement in Micro/Minichannels Using Nanofluids: Theory and Applications
,”
Appl. Energy
,
164
, pp.
733
755
.
17.
Vanaki
,
S. M.
,
Ganesan
,
P.
, and
Mohammed
,
H. A.
,
2016
, “
Numerical Study of Convective Heat Transfer of Nanofluids: A Review
,”
Renewable Sustainable Energy Rev.
,
54
, pp.
1212
1239
.
18.
Putra
,
N.
,
Roetzel
,
W.
, and
Das
,
S. K.
,
2003
, “
Natural Convection of Nano-Fluids
,”
Heat Mass Transfer
,
39
(
8–9
), pp.
775
784
.
19.
Wen
,
D.
, and
Ding
,
Y.
,
2006
, “
Natural Convective Heat Transfer of Suspensions of Titanium Dioxide Nanoparticles (Nanofluids)
,”
IEEE Trans. Nanotechnol.
,
5
(
3
), pp.
220
227
.
20.
Ho
,
C. J.
,
Wu
,
M. S.
, and
Jou
,
J. B.
,
1990
, “
Analysis of Buoyancy-Aided Convection Heat Transfer From a Horizontal Cylinder in a Vertical Duct at Low Reynolds Number
,”
Wäarme- Stoffübertrag.
,
25
(
6
), pp.
337
343
.
21.
Rashad
,
A. M.
,
Chamkha
,
A. J.
, and
Modather
,
M.
,
2013
, “
Mixed Convection Boundary-Layer Flow Past a Horizontal Circular Cylinder Embedded in a Porous Medium Filled With a Nanofluid Under Convective Boundary Condition
,”
Comput. Fluids
,
86
, pp.
380
388
.
22.
Maïga
,
S. E. B.
,
Nguyen
,
C. T.
,
Galanis
,
N.
, and
Roy
,
G.
,
2004
, “
Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube
,”
Superlattices Microstruct.
,
35
(
3–6
), pp.
543
557
.
23.
Sarkar
,
S.
,
Ganguly
,
S.
, and
Biswas
,
G.
,
2012
, “
Mixed Convective Heat Transfer of Nanofluids Past a Circular Cylinder in Cross Flow in Unsteady Regime
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4783
4799
.
24.
Santra
,
A. K.
,
Sen
,
S.
, and
Chakraborty
,
N.
,
2009
, “
Study of Heat Transfer Due to Laminar Flow of Copper-Water Nanofluid Through Two Isothermally Heated Parallel Plates
,”
Int. J. Therm. Sci.
,
48
(
2
), pp.
391
400
.
25.
Singh
,
A. K.
,
Harinadha
,
G.
,
Kishore
,
N.
,
Barua
,
P.
,
Jain
,
T.
, and
Joshi
,
P.
,
2015
, “
Mixed Convective Heat Transfer Phenomena of Circular Cylinders to Non-Newtonian Nanofluids Flowing Upward
,”
Procedia Eng.
,
127
, pp.
118
125
.
26.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.
27.
Singh
,
A. K.
, and
Kishore
,
N.
,
2017
, “
Mixed Convection of Shear-Thinning Nanofluids Past Unconfined Elliptical Cylinders in Vertical Upward Flow
,”
Int. J. Therm. Sci.
,
122
, pp.
326
358
.
28.
Tiwari
,
A. K.
, and
Chhabra
,
R. P.
,
2015
, “
Mixed Convection in Power-Law Fluids From a Heated Semicircular Cylinder: Effect of Aiding Buoyancy
,”
Numer. Heat Transfer, Part A
,
67
(
3
), pp.
330
356
.
29.
Sarkar
,
S.
,
Dalal
,
A.
, and
Biswas
,
G.
,
2011
, “
Unsteady Wake Dynamics and Heat Transfer in Forced and Mixed Convection Past a Circular Cylinder in Cross Flow for High Prandtl Numbers
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3536
3551
.
30.
Srinivas
,
A. T.
,
Bharti
,
R. P.
, and
Chhabra
,
R. P.
,
2009
, “
Mixed Convection Heat Transfer From a Cylinder in Power-Law Fluids: Effect of Aiding Buoyancy
,”
Ind. Eng. Chem. Res.
,
48
(
21
), pp.
9735
9754
.
You do not currently have access to this content.