Turbulent characteristics of Czochralski melt flow are presented using the unsteady Reynolds-averaged Navier–Stokes (URANS) turbulence modeling approach. Three-dimensional, transient computations were performed using the Launder and Sharma low-Re k-ε model and Menter shear stress transport (SST) k-ω model on an idealized Czochralski setup with counterrotating crystal and crucible. A comparative assessment is performed between these two Reynolds-averaged Navier–Stokes (RANS) models in capturing turbulent thermal and flow behaviors. It was observed that the SST k-ω model predicted a better resolution of the Czochralski melt flow capturing the near wall thermal gradients, resolving stronger convective flow at the melt free surface, deciphering more number of characteristics Czochralski recirculating cells along with predicting large number of coherent eddy structures and vortex cores distributed in the melt and hence a larger level of turbulent intensity in the Czochralski melt compared with that by Launder and Sharma low-Re k-ε model.

References

1.
Ristorcelli
,
J. R.
, and
Lumley
,
J. L.
,
1992
, “
Instabilities, Transition and Turbulence in the Czochralski Crystal Melt
,”
J. Cryst. Growth
,
116
(
3–4
), pp.
447
460
.
2.
Müller
,
G.
,
1993
, “
Convective Instabilities in Melt Growth Configurations
,”
J. Cryst. Growth
,
128
(
1–4
), pp.
26
36
.
3.
Kobayashi
,
S.
,
Miyahara
,
S.
,
Fujiwara
,
T.
,
Kubo
,
T.
, and
Fujiwara
,
H.
,
1991
, “
Turbulent Heat Transfer Through the Melt in Silicon Czochralski Growth
,”
J. Cryst. Growth
,
109
(
1–4
), pp.
149
154
.
4.
Lipchin
,
A.
, and
Brown
,
R. A.
,
1999
, “
Comparison of Three Turbulence Models for Simulation of Melt Convection in Czochralski Crystal Growth of Silicon
,”
J. Cryst. Growth
,
205
(
1–2
), pp.
71
91
.
5.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat. Mass Transfer
,
15
(
2
), pp.
301
314
.
6.
Kalaev
,
V. V.
,
Evstratov
,
I. Y.
, and
Makarov
,
Y. N.
,
2003
, “
Gas Flow Effect on Global Heat Transport and Melt Convection in Czochralski Silicon Growth
,”
J. Cryst. Growth
,
249
(
1–2
), pp.
87
99
.
7.
Chien
,
K.
,
1982
, “
Predictions of Channel and Boundary-Layer Flows With a Low-Reynolds-Number Turbulence Model
,”
AIAA J.
,
20
(
1
), pp.
33
38
.
8.
Krauze
,
A.
,
Muižnieks
,
A.
,
Mühlbauer
,
A.
,
Wetzel
,
T.
, and
Ammon
,
W. V.
,
2004
, “
Numerical 3D Modelling of Turbulent Melt Flow in Large CZ System With Horizontal DC Magnetic Field—I: Flow Structure Analysis
,”
J. Cryst. Growth
,
262
(
1–4
), pp.
157
167
.
9.
Son
,
S.
,
Nam
,
P.
, and
Yi
,
K.
,
2006
, “
The Effect of Crystal Rotation Direction on the Thermal and Velocity Fields of a Czochralski System With a Low Prandtl Number Melt
,”
J. Cryst. Growth
,
292
(
2
), pp.
272
281
.
10.
Nam
,
P.
,
Sang-Kun
,
O.
, and
Yi
,
K.
,
2008
, “
3-D Time-Dependent Numerical Model of Flow Patterns Within a Large-Scale Czochralski System
,”
J. Cryst. Growth
,
310
(
7
), pp.
2126
2133
.
11.
Nam
,
P.
, and
Yi
,
K.
,
2010
, “
Simulation of the Thermal Fluctuation According to the Melt Height in a CZ Growth System
,”
J. Cryst. Growth
,
312
(
8
), pp.
1453
1457
.
12.
Zhou
,
X.
, and
Huang
,
H.
,
2012
, “
Numerical Simulation of Cz Crystal Growth in Rotating Magnetic Field With Crystal and Crucible Rotations
,”
J. Cryst. Growth
,
340
(
1
), pp.
166
170
.
13.
Liu
,
X.
,
Liu
,
L.
,
Li
,
Z.
, and
Wang
,
Y.
,
2012
, “
Effects of Cusp-Shaped Magnetic Field on Melt Convection and Oxygen Transport in an Industrial CZ-Si Crystal Growth
,”
J. Cryst. Growth
,
354
(
1
), pp.
101
108
.
14.
Fang
,
H. S.
,
Jin
,
Z. L.
, and
Huang
,
X. M.
,
2012
, “
Study and Optimization of Gas Flow and Temperature Distribution in a Czochralski Configuration
,”
J. Cryst. Growth
,
361
, pp.
114
120
.
15.
Verma
,
S.
, and
Dewan
,
A.
,
2014
, “
Solidification Modeling: Evolution, Benchmarks, Trends in Handling Turbulence and Future Directions
,”
Metall. Mater. Trans. B
,
45
(
4
), pp.
1456
1471
.
16.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
17.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “Ten Years of Industrial Experience With the SST Turbulence Model,”
Turbulence, Heat and Mas Transfer 4
,
K.
Hanjalic
,
Y.
Nagano
and
M.
Tummers
, eds.,
Begell House, Inc.
, pp.
625
632
.
18.
Launder
,
B. E.
, and
Sharma
,
B. I.
,
1974
, “
Application of the Energy-Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
138
.
19.
Raufeisen
,
A.
,
Breuer
,
M.
,
Botsch
,
T.
, and
Delgado
,
A.
,
2008
, “
DNS of Rotating Buoyancy- and Surface Tension-Driven Flow
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6219
6234
.
20.
Raufeisen
,
A.
,
Breuer
,
M.
,
Botsch
,
T.
, and
Delgado
,
A.
,
2009
, “
LES Validation of Turbulent Rotating Buoyancy- and Surface Tension-Driven Flow Against DNS
,”
Comput. Fluids
,
38
(
8
), pp.
1549
1565
.
21.
Spalart
,
P. R.
, and
Shur
,
M.
,
1997
, “
On the Sensitization of Turbulence Models to Rotation and Curvature
,”
Aerosp. Sci. Technol.,
5
(
5
), pp.
297
302
.
22.
Gräbner
,
O.
,
Müller
,
G.
,
Virbulis
,
J.
,
Tomzig
,
E.
, and
Ammon
,
W. V.
,
2001
, “
Effects of Various Magnetic Field Configurations on Temperature Distributions in Czochralski Silicon Melts
,”
Microelectron. Eng.,
56
(
1–2
), pp.
83
88
.
23.
Basu
,
B.
,
Enger
,
S.
,
Breuer
,
M.
, and
Durst
,
F.
,
2000
, “
Three-Dimensional Simulation of Flow and Thermal Field in a Czochralski Melt Using a Block-Structured Finite-Volume Method
”,
J. Cryst. Growth
,
219
(
1–2
),
123
143
.
24.
Wagner
,
C.
, and
Friedrich
,
R.
,
2004
, “
Direct Numerical Simulation of Momentum and Heat Transport in Idealized Czochralski Crystal Growth Configurations
,”
Int. J. Heat Fluid Flow
,
25
(
3
), pp.
431
443
.
25.
Atia
,
A.
,
Ghernaout
,
B.
,
Bouabdallah
,
S.
, and
Bessaa
,
R.
,
2016
, “
Three-Dimensional Oscillatory Mixed Convection in a Czochralski Silicon Melt Under the Axial Magnetic Field
,”
Appl. Therm. Eng.
,
105
, pp.
704
715
.
26.
Geers
,
L. F. G.
,
Tummers
,
M. J.
, and
Hanjali
,
K.
,
2005
, “
Particle Imaging Velocimetry-Based Identification of Coherent Structures in Normally Impinging Multiple Jets
,”
Phys. Fluids
,
17
(
5
), pp.
1
13
.
You do not currently have access to this content.