Abstract

Plate heat exchangers are widely used in various industries for many years. The corrugated channels on the plates effectively enhance the turbulence of flow boiling and complicate the prediction of pressure drop. This article presents a brief review about effects of various operating and geometrical factors on frictional pressure drop during flow boiling in plate heat exchangers. Experimental data points of frictional pressure drop were collected from the previous literature to develop a general correlation. The database contained 591 data points, covering six different refrigerants, mass flux range 5.5–130 kg/m2/s1, heat flux 0–15 kW/m2, vapor quality 0.04–0.96, saturation temperature −25 to 61 C°, chevron angle 20 deg–65 deg, and hydraulic diameter 1.7–5.35 mm. In this study, several existing correlations were compared with the database, and most of them seem fail to give an acceptable prediction. A new correlation was proposed with multiple regression analysis in terms of two-phase Fanning friction factor. The new method showed a good agreement with the present database and predicted 70.2% and 91.7% of data points within ±30% and ±50% errors, respectively.

References

1.
Li
,
W.
,
Zheng
,
B.
,
Lv
,
T.
, and
Ayub
,
Z.
,
2020
, “
A Modified Correlation for Flow Boiling Heat Transfer in Plate Heat Exchangers
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
6
), p.
061006
. 10.1115/1.4046786
2.
Amalfi
,
R. L.
,
Vakili-Farahani
,
F.
, and
Thome
,
J. R.
,
2016
, “
Flow Boiling and Frictional Pressure Gradients in Plate Heat Exchangers. Part 1: Review and Experimental Database
,”
Int. J. Refrig.
,
61
, pp.
166
184
. 10.1016/j.ijrefrig.2015.07.010
3.
Yan
,
Y.-Y.
, and
Lin
,
T.-F.
,
1999
, “
Evaporation Heat Transfer and Pressure Drop of Refrigerant R-134a in a Plate Heat Exchanger
,”
ASME J. Heat Transfer
,
121
(
1
), pp.
118
127
. 10.1115/1.2825924
4.
Zhang
,
J.
,
Desideri
,
A.
,
Kærn
,
M. R.
,
Ommen
,
T. S.
,
Wronski
,
J.
, and
Haglind
,
F.
,
2017
, “
Flow Boiling Heat Transfer and Pressure Drop Characteristics of R134a, R1234yf and R1234ze in a Plate Heat Exchanger for Organic Rankine Cycle Units
,”
Int. J. Heat Mass Transfer
,
108
, pp.
1787
1801
. 10.1016/j.ijheatmasstransfer.2017.01.026
5.
Amalfi
,
R. L.
,
Thome
,
J. R.
,
Solotych
,
V.
, and
Kim
,
J.
,
2016
, “
High Resolution Local Heat Transfer and Pressure Drop Infrared Measurements of Two-Phase Flow of R245fa Within a Compact Plate Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
103
, pp.
791
806
. 10.1016/j.ijheatmasstransfer.2016.07.060
6.
Kim
,
D.
,
Lee
,
D.
,
Jang
,
D. S.
,
Jeon
,
Y.
, and
Kim
,
Y.
,
2018
, “
Comparative Evaluation of Flow Boiling Heat Transfer Characteristics of R-1234ze(E) and R-134a in Plate Heat Exchangers With Different Chevron Angles
,”
Appl. Therm. Eng.
,
132
, pp.
719
729
. 10.1016/j.applthermaleng.2018.01.019
7.
Solotych
,
V.
,
Lee
,
D.
,
Kim
,
J.
,
Amalfi
,
R. L.
, and
Thome
,
J. R.
,
2016
, “
Boiling Heat Transfer and Two-Phase Pressure Drops Within Compact Plate Heat Exchangers: Experiments and Flow Visualizations
,”
Int. J. Heat Mass Transfer
,
94
, pp.
239
253
. 10.1016/j.ijheatmasstransfer.2015.11.037
8.
Khan
,
T. S.
,
Khan
,
M. S.
,
Chyu
,
M.-C.
, and
Ayub
,
Z. H.
,
2012
, “
Experimental Investigation of Evaporation Heat Transfer and Pressure Drop of Ammonia in a 60 °Chevron Plate Heat Exchanger
,”
Int. J. Refrig.
,
35
(
2
), pp.
336
348
. 10.1016/j.ijrefrig.2011.10.018
9.
Lee
,
E.
,
Kang
,
H.
, and
Kim
,
Y.
,
2014
, “
Flow Boiling Heat Transfer and Pressure Drop of Water in a Plate Heat Exchanger With Corrugated Channels at Low Mass Flux Conditions
,”
Int. J. Heat Mass Transfer
,
77
, pp.
37
45
. 10.1016/j.ijheatmasstransfer.2014.05.019
10.
Han
,
D.-H.
,
Lee
,
K.-J.
, and
Kim
,
Y.-H.
,
2003
, “
Experiments on the Characteristics of Evaporation of R410A in Brazed Plate Heat Exchangers With Different Geometric Configurations
,”
Appl. Therm. Eng.
,
23
(
10
), pp.
1209
1225
. 10.1016/S1359-4311(03)00061-9
11.
Amalfi
,
R. L.
,
Vakili-Farahani
,
F.
, and
Thome
,
J. R.
,
2016
, “
Flow Boiling and Frictional Pressure Gradients in Plate Heat Exchangers. Part 2: Comparison of Literature Methods to Database and New Prediction Methods
,”
Int. J. Refrig.
,
61
, pp.
185
203
. 10.1016/j.ijrefrig.2015.07.009
12.
Ayub
,
Z. H.
,
Khan
,
T. S.
,
Salam
,
S.
,
Nawaz
,
K.
,
Ayub
,
A. H.
, and
Khan
,
M. S.
,
2019
, “
Literature Survey and a Universal Evaporation Correlation for Plate Type Heat Exchangers
,”
Int. J. Refrig.
,
99
, pp.
408
418
. 10.1016/j.ijrefrig.2018.09.008
13.
Huang
,
J.
,
Sheer
,
T. J.
, and
Bailey-McEwan
,
M.
,
2012
, “
Heat Transfer and Pressure Drop in Plate Heat Exchanger Refrigerant Evaporators
,”
Int. J. Refrig.
,
35
(
2
), pp.
325
335
. 10.1016/j.ijrefrig.2011.11.002
14.
Tao
,
X.
, and
Infante Ferreira
,
C. A.
,
2019
, “
Heat Transfer and Frictional Pressure Drop During Condensation in Plate Heat Exchangers: Assessment of Correlations and a New Method
,”
Int. J. Heat Mass Transfer
,
135
, pp.
996
1012
. 10.1016/j.ijheatmasstransfer.2019.01.132
15.
Shah
,
R. K.
,
Subbarao
,
E. C.
, and
Mashelkar
,
R. A.
,
1988
,
Heat Transfer Equipment Design
,
CRC Press
,
Boca Raton, FL
.
16.
Lee
,
D.
,
Kim
,
D.
,
Park
,
S.
,
Lim
,
J.
, and
Kim
,
Y.
,
2018
, “
Evaporation Heat Transfer Coefficient and Pressure Drop of R-1233zd(E) in a Brazed Plate Heat Exchanger
,”
Appl. Therm. Eng.
,
130
, pp.
1147
1155
. 10.1016/j.applthermaleng.2017.11.088
17.
Kim
,
H. J.
,
Liebenberg
,
L.
, and
Jacobi
,
A. M.
,
2018
, “
Convective Boiling of R-134a Near the Micro-Macroscale Transition Inside a Vertical Brazed Plate Heat Exchanger
,”
ASME J. Heat Transfer
,
140
(
9
), p.
051501
.
18.
Khan
,
M. S.
,
Khan
,
T. S.
,
Chyu
,
M.-C.
, and
Ayub
,
Z. H.
,
2012
, “
Experimental Investigation of Evaporation Heat Transfer and Pressure Drop of Ammonia in a 30 °Chevron Plate Heat Exchanger
,”
Int. J. Refrig.
,
35
(
6
), pp.
1757
1765
. 10.1016/j.ijrefrig.2012.05.019
19.
Vakili-Farahani
,
F.
,
Amalfi
,
R. L.
, and
Thome
,
J. R.
,
2014
, “
Two-Phase Flow and Boiling of R245fa in a 1 mm Pressing Depth Plate Heat Exchanger—Part I: Adiabatic Pressure Drop
,”
Interfacial Phenom. Heat Transfer
,
2
(
4
), pp.
325
342
. 10.1615/InterfacPhenomHeatTransfer.2015012027
20.
Khan
,
M. S.
,
Khan
,
T. S.
,
Chyu
,
M.-C.
, and
Ayub
,
Z. H.
,
2014
, “
Evaporation Heat Transfer and Pressure Drop of Ammonia in a Mixed Configuration Chevron Plate Heat Exchanger
,”
Int. J. Refrig.
,
41
, pp.
92
102
. 10.1016/j.ijrefrig.2013.12.015
21.
Lockhart
,
R. W.
,
1949
, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
,
45
, pp.
39
45
.
22.
Nilpueng
,
K.
, and
Wongwises
,
S.
,
2010
, “
Two-Phase Gas–Liquid Flow Characteristics Inside a Plate Heat Exchanger
,”
Exp. Therm. Fluid. Sci.
,
34
(
8
), pp.
1217
1229
. 10.1016/j.expthermflusci.2010.05.001
23.
Lee
,
D.
,
Kim
,
D.
,
Yun
,
S.
, and
Kim
,
Y.
,
2019
, “
Two-Phase Flow Patterns and Pressure Drop of a Low GWP Refrigerant R-1234ze(E) in a Plate Heat Exchanger Under Adiabatic Conditions
,”
Int. J. Heat Mass Transfer
,
145
, p.
118816
. 10.1016/j.ijheatmasstransfer.2019.118816
24.
Lee
,
E. J.
,
Kim
,
N. H.
, and
Byun
,
H. W.
,
2014
, “
Condensation Heat Transfer and Pressure Drop in Flattened Microfin Tubes Having Different Aspect Ratios
,”
Int. J. Refrig.
,
38
, pp.
236
249
. 10.1016/j.ijrefrig.2013.09.035
25.
Ayub
,
Z. H.
,
2003
, “
Plate Heat Exchanger Literature Survey and New Heat Transfer and Pressure Drop Correlations for Refrigerant Evaporators
,”
Heat Transfer Eng.
,
24
(
5
), pp.
3
16
. 10.1080/01457630304056
26.
Jo
,
C.
,
Lee
,
D.
,
Chung
,
H. J.
,
Kang
,
Y.
, and
Kim
,
Y.
,
2020
, “
Comparative Evaluation of the Evaporation Heat Transfer Characteristics of a Low-GWP Refrigerant R-1234ze(E) Between Shell-and-Plate and Plate Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
153
, p.
119598
. 10.1016/j.ijheatmasstransfer.2020.119598
27.
Hsieh
,
Y. Y.
, and
Lin
,
T. F.
,
2003
, “
Evaporation Heat Transfer and Pressure Drop of Refrigerant R-410A Flow in a Vertical Plate Heat Exchanger
,”
ASME J. Heat Transfer
,
125
(
5
), pp.
852
857
. 10.1115/1.1518498
28.
Park
,
J.-H.
, and
Kim
,
Y.-S.
,
2004
, “
Evaporation Heat Transfer and Pressure Drop Characteristics of r-134a in the Oblong Shell and Plate Heat Exchanger
,”
KSME Int. J.
,
18
(
12
), pp.
2284
2293
. 10.1007/BF02990233
29.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
Mclinden
,
M. O.
,
2013
,
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, Standard Reference Data Program
,
National Institute of Standards and Technology
,
Gaithersburg, MD
.
30.
Li
,
W.
, and
Wu
,
Z.
,
2010
, “
A General Criterion for Evaporative Heat Transfer in Micro/Mini-Channels
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1967
1976
. 10.1016/j.ijheatmasstransfer.2009.12.059
31.
Cioncolini
,
A.
,
Thome
,
J. R.
, and
Lombardi
,
C.
,
2009
, “
Unified Macro-to-Microscale Method to Predict Two-Phase Frictional Pressure Drops of Annular Flows
,”
Int. J. Multiphase Flow
,
35
(
12
), pp.
1138
1148
. 10.1016/j.ijmultiphaseflow.2009.07.005
You do not currently have access to this content.