Abstract

In this research work, heat and mass transport and radiated, two-dimensional, steady, incompressible nanofluid flow of non-Newtonian material (Carreau fluid) over a stretchable moving surface of sheet is examined. The flow is saturated through Darcy-Forchheimer porous medium and generated by stretching phenomenon. Furthermore, magnetodydrodynamics (MHD), mixed convection, heat generation/absorption, nonlinear thermal radiation, thermophoresis diffusion, activation energy, Brownian motion, and chemical reaction effects are accounted to develop the governing expressions, i.e., momentum, energy, and concentration for the considered flow problem. The governing equations are first altered into nonlinear ordinary differential equations with the help of appropriate similarity variables and then computational results are computed by Built-in-Shooting technique via mathematica. The salient aspects of sundry variables are discussed graphically on the velocity field, skin friction coefficient, temperature profile, Nusselt number, concentration field, and Sherwood number. Outcomes illustrate that the velocity field and temperature profile have contrast behavior against higher values of magnetic parameter. Also, the engineering quantities are discussed numerically with the help of important flow variables and the results are demonstrated through tables.

References

1.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
, FED 231/MD 66, pp.
99
105
.
2.
Hwang
,
K. S.
,
Lee
,
J. H.
, and
Jang
,
S. P.
,
2007
, “
Buoyancy-Driven Heat Transfer of Water-Based Al2O3 Nanofluids in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4003
4010
. 10.1016/j.ijheatmasstransfer.2007.01.037
3.
Wang
,
Y.
, and
Su
,
G. H.
,
2016
, “
Experimental Investigation on Nanofluid Flow Boiling Heat Transfer in a Vertical Tube Under Different Pressure Conditions
,”
Exp. Therm. Fluid Sci.
,
77
(
C
), pp.
116
123
. 10.1016/j.expthermflusci.2016.04.014
4.
Ahmadi
,
M.
, and
Willing
,
G.
,
2018
, “
Heat Transfer Measurement in Water Based Nanofluids
,”
Int. J. Heat Mass Transfer
,
118
, pp.
40
47
. 10.1016/j.ijheatmasstransfer.2017.10.090
5.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Transfer
,
128
(
3
), pp.
240
250
. 10.1115/1.2150834
6.
Tiwari
,
R. K.
, and
Das
,
M. K.
,
2007
, “
Heat Transfer Augmentation in a Two-Sided Lid-Driven Differentially Heated Square Cavity Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
50
(
9–10
), pp.
2002
2018
. 10.1016/j.ijheatmasstransfer.2006.09.034
7.
Aly
,
E. H.
, and
Pop
,
I.
,
2020
, “
MHD Flow and Heat Transfer Near Stagnation Point Over a Stretching/Shrinking Surface with Partial Slip and Viscous Dissipation: Hybrid Nanofluid Versus Nanofluid
,”
Powder Technol.
,
367
, pp.
192
205
. 10.1016/j.powtec.2020.03.030
8.
Hsiao
,
K. L.
,
2017
, “
Combined Electrical MHD Heat Transfer Thermal Extrusion System Using Maxwell Fluid with Radiative and Viscous Dissipation Effects
,”
Appl. Therm. Eng.
,
112
, pp.
1281
1288
. 10.1016/j.applthermaleng.2016.08.208
9.
Muhammad
,
R.
,
Khan
,
M. I.
,
Khan
,
N. B.
, and
Jameel
,
M.
,
2020
, “
Magnetohydrodynamics (MHD) Radiated Nanomaterial Viscous Material Flow by a Curved Surface with Second Order Slip and Entropy Generation
,”
Comput. Methods Programs Biomed.
,
189
, p.
105294
. 10.1016/j.cmpb.2019.105294
10.
Hsiao
,
K. L.
,
2011
, “
MHD Mixed Convection for Viscoelastic Fluid Past a Porous Wedge
,”
Int. J. Non-Linear Mech.
,
46
(
1
), pp.
1
8
. 10.1016/j.ijnonlinmec.2010.06.005
11.
Muhammad
,
R.
,
Khan
,
M. I.
,
Jameel
,
M.
, and
Khan
,
N. B.
,
2020
, “
Fully Developed Darcy-Forchheimer Mixed Convective Flow Over a Curved Surface With Activation Energy and Entropy Generation
,”
Comput. Methods Programs Biomed.
,
188
, p.
105298
. 10.1016/j.cmpb.2019.105298
12.
Hsiao
,
K. L.
,
2014
, “
Nanofluid Flow With Multimedia Physical Features for Conjugate Mixed Convection and Radiation
,”
Comput. Fluids
,
104
, pp.
1
8
. 10.1016/j.compfluid.2014.08.001
13.
Khan
,
M. I.
, and
Alzahrani
,
F.
,
2020
, “
Binary Chemical Reaction With Activation Energy in Dissipative Flow of Non-Newtonian Nanomaterial
,”
J. Theor. Comput. Chem.
,
19
(
3
), p.
2040006
. 10.1142/S0219633620400064
14.
Hsiao
,
K. L.
,
2017
, “
Micropolar Nanofluid Flow With MHD and Viscous Dissipation Effects Towards a Stretching Sheet With Multimedia Feature
,”
Int. J. Heat Mass Transfer
,
112
, pp.
983
990
. 10.1016/j.ijheatmasstransfer.2017.05.042
15.
Sakiadis
,
B. C.
,
1961
, “
Boundary-Layer Behavior on Continuous Solid Surfaces: I. Boundary Layer Equations For Two-Dimensional and Axisymmetric Flow
,”
Am. Inst. Chem. Eng. J.
,
7
(
1
), pp.
26
28
. 10.1002/aic.690070108
16.
Crane
,
L. J.
,
1970
, “
Flow Past a Stretching Plate
,”
Z. Angew. Math. Phys.
,
21
, pp.
645
647
. 10.1007/BF01587695
17.
Khan
,
M. I.
,
Waqas
,
M.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2017
, “
A Comparative Study of Casson Fluid With Homogeneous-Heterogeneous Reactions
,”
J. Colloid Interface Sci.
,
498
, pp.
85
90
. 10.1016/j.jcis.2017.03.024
18.
Hayat
,
T.
,
Khan
,
S. A.
,
Alsaedi
,
A.
, and
Zai
,
Q. M. Z.
,
2020
, “
Computational Analysis of Heat Transfer in Mixed Convective Flow of CNTs With Entropy Optimization by a Curved Stretching Sheet
,”
Int. Commun. Heat Mass Tansfer
,
118
, p.
104881
. 10.1016/j.icheatmasstransfer.2020.104881
19.
Hayat
,
T.
,
Khan
,
S. A.
, and
Alsaedi
,
A.
,
2020
, “
Simulation and Modeling of Entropy Optimized MHD Flow of Second Grade Fluid With Dissipation Effect
,”
J. Mater. Res. Technol.
,
9
(
5
), pp.
11993
12006
. 10.1016/j.jmrt.2020.07.067
20.
Khan
,
M. I.
,
Qayyum
,
S.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2018
, “
Entropy Generation Minimization and Statistical Declaration With Probable Error for Skin Friction Coefficient and Nusselt Number
,”
Chin. J. Phys.
,
56
(
4
), pp.
1525
1546
. 10.1016/j.cjph.2018.06.023
21.
Mahanthesh
,
B.
,
Animasaun
,
I. L.
,
Rahimi-Gorji
,
M.
, and
Alarifi
,
I. M.
,
2019
, “
Quadratic Convective Transport of Dusty Casson and Dusty Carreau Fluids Past a Stretched Surface With Nonlinear Thermal Radiation, Convective Condition and Non-Uniform Heat Source/Sink
,”
Phys. A: Stat. Mech. Appl.
,
535
, p.
122471
. 10.1016/j.physa.2019.122471
22.
Khan
,
M. I.
,
Nigar
,
M.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2020
, “
On the Numerical Simulation of Stagnation Point Flow of Non-Newtonian Fluid (Carreau Fluid) With Cattaneo-Christov Heat Flux
,”
Comput. Methods Programs Biomed.
,
187
, p.
105221
. 10.1016/j.cmpb.2019.105221
23.
Akbar
,
N. S.
,
Ebaid
,
A.
, and
Khan
,
Z. H.
,
2015
, “
Numerical Analysis of Magnetic Field Effects on Eyring-Powell Fluid Flow Towards a Stretching Sheet
,”
J Magn. Magn. Mater.
,
382
, pp.
355
358
. 10.1016/j.jmmm.2015.01.088
24.
Bilal
,
S.
,
Malik
,
M. Y.
,
Awais
,
M.
,
Rehman
,
K. L.
,
Hussain
,
A.
, and
Khan
,
I.
,
2018
, “
Numerical Investigation on 2D Viscoelastic Fuid Due to Exponentially Stretching Surface With Magnetic Effects: An Application of Non-Fourier Flux Theory
,”
Neural Comput. Appl.
,
30
(
9
), pp.
2749
2758
. 10.1007/s00521-016-2832-4
25.
Fathizadeh
,
M.
,
Madani
,
M.
,
Khan
,
Y.
,
Faraz
,
N.
,
Yildirim
,
A.
, and
Tutkun
,
S.
,
2013
, “
An Effective Modification of the Homotopy Perturbation Method for MHD Viscous Flow Over a Stretching Sheet
,”
J. King Saud Univ.-Sci.
,
25
(
2
), pp.
107
113
. 10.1016/j.jksus.2011.08.003
You do not currently have access to this content.