Abstract

The present work reports an experimental investigation of heat transfer characteristics of a closed-loop two-phase thermosyphon (CLTPT) system with a structured heating surface. A novel structured heating surface, i.e., segmented finned microchannels, has been used to promote heat transfer rate, and its performance has been compared with that of plane heating surface. Compared with the plane heating surface, the segmented finned structured heating surface produces an enhancement of 157% in heat transfer coefficient (HTC), whereas it produces a 145% enhancement in the critical heat flux (CHF). The present structured surface also delivers better heat transfer performance compared with the available data in the literature.

References

1.
Gurrum
,
S. P.
,
Suman
,
S. K.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
,
2004
, “
Thermal Issues in Next-Generation Integrated Circuits
,”
IEEE Trans. Device Mater. Reliab.
,
4
(
4
), pp.
709
714
.
2.
Garimella
,
S. V.
,
Fleischer
,
A. S.
,
Murthy
,
J. Y.
,
Keshavarzi
,
A.
,
Prasher
,
R.
,
Patel
,
C.
,
Bhavnani
,
S. H.
, et al
,
2008
, “
Thermal Challenges in Next-Generation Electronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
4
), pp.
801
815
.
3.
Franco
,
A.
, and
Filippeschi
,
S.
,
2011
, “
Closed Loop Two-Phase Thermosyphon of Small Dimensions: A Review of Experimental Results
,”
Microgravity Sci. Technol.
,
24
(
3
), pp.
165
179
.
4.
Cohen
,
H.
, and
Bayley
,
F. J.
,
1955
, “
Heat-Transfer Problems of Liquid-Cooled Gas-Turbine Blades
,”
Proc. Inst. Mech. Eng.
,
169
(
1
), pp.
1063
1080
.
5.
Samba
,
A.
,
Louahlia-Gualous
,
H.
,
Le Masson
,
S.
, and
Nörterhäuser
,
D.
,
2013
, “
Two-Phase Thermosyphon Loop for Cooling Outdoor Telecommunication Equipments
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
1351
1360
.
6.
Shiraishi
,
M.
,
Kikuchi
,
K.
, and
Yamanishi
,
T.
,
1981
, “
Investigation of Heat Transfer Characteristics of
a Two-Phase Closed Thermosyphon
,”
Advances in Heat Pipe Technology, Proceedings of the IVth International Heat Pipe Conference
,
London, UK
,
Sept. 7–10
, pp.
95
104
.
7.
Mudawar
,
I.
,
2001
, “
Assessment of High Heat Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
122
141
.
8.
Yeo
,
J.
,
Yamashita
,
S.
,
Hayashida
,
M.
, and
Koyama
,
S.
,
2014
, “
A Loop Thermosyphon Type Cooling System for High Heat Flux
,”
J. Electron. Cool. Therm. Control
,
1
(
04
), pp.
128
137
.
9.
Chang
,
C. C.
,
Kuo
,
S. C.
,
Ke
,
M. T.
, and
Chen
,
S. L.
,
2010
, “
Two-Phase Closed-Loop Thermosyphon for Electronic Cooling
,”
Exp. Heat Transfer
,
23
(
2
), pp.
144
156
.
10.
Liu
,
Q.
,
Fukuda
,
K.
, and
Sutopo
,
P. F.
,
2014
, “
Experimental Study on Thermosyphon for Shipboard High-Power Electronics Cooling System
,”
Heat Transfer Eng.
,
35
(
11–12
), pp.
1077
1083
.
11.
Park
,
Y. J.
,
Kang
,
H. K.
, and
Kim
,
C. J.
,
2002
, “
Heat Transfer Characteristics of a Two- Phase Closed Thermosyphon to the Fill Charge Ratio
,”
Int. J. Heat Mass Transfer
,
45
(
23
), pp.
4655
4661
.
12.
Kondou
,
C.
,
Umemoto
,
S.
,
Koyama
,
S.
, and
Mitooka
,
Y.
,
2017
, “
Improving the Heat Dissipation Performance of a Looped Thermosyphon Using Low-GWP Volatile Fluids R1234ze (Z) and R1234ze (E) With a Super-Hydrophilic Boiling Surface
,”
Appl. Therm. Eng.
,
118
, pp.
147
158
.
13.
Khodabandeh
,
R.
,
2004
, “
Thermal Performance of a Closed Advanced Two-Phase Thermosyphon Loop for Cooling of Radio Base Stations at Different Operating Conditions
,”
Appl. Therm. Energy
,
24
(
17–18
), pp.
2643
2655
.
14.
Jafari
,
D.
,
Marco
,
P. D.
,
Filippeschi
,
S.
, and
Franco
,
A.
,
2017
, “
An Experimental Investigation on the Evaporation and Condensation Heat Transfer of Two-Phase Closed Thermosyphons
,”
Exp. Therm. Fluid. Sci.
,
88
, pp.
111
123
.
15.
He
,
H.
,
Furusato
,
K.
,
Yamada
,
M.
,
Shen
,
B.
,
Hidaka
,
S.
,
Kohno
,
M.
,
Takahashi
,
K.
, and
Takata
,
Y.
,
2017
, “
Efficiency Enhancement of a Loop Thermosyphon on Mixed Wettability Evaporator Surface
,”
Appl. Therm. Energy
,
123
(
1
), pp.
1245
1254
.
16.
Prajapati
,
Y. K.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2015
, “
A Comparative Study of Flow Boiling Heat Transfer in Three Different Configurations of Microchannels
,”
Int. J. Heat Mass Transfer
,
85
, pp.
711
722
.
17.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2012
, “
Effect of Open Microchannel Geometry on Pool Boiling Enhancement
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1004
1013
.
18.
Gouda
,
R. K.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2018
, “
Pool Boiling Heat Transfer Enhancement With Segmented Finned Microchannels Structured Surface
,”
Int. J. Heat Mass Transfer
,
127
, pp.
39
50
.
19.
Matthew
,
L.
,
Kanargi
,
O. B.
, and
Lee
,
P. S.
,
2016
, “
Effects of Varying Oblique Angles on Flow Boiling Heat Transfer and Pressure Characteristics in Oblique-Finned Microchannels
,”
Int. J. Heat Mass Transfer
,
100
, pp.
646
660
.
20.
Kutateladze
,
S. S.
,
1951
, “
A Hydrodynamic Theory of Changes in a Boiling Process Under Free Convection
,”
Not. Acad. Sci. Dep. Tech. Sci.
,
4
, pp.
529
536
.
You do not currently have access to this content.