Abstract
The present work reports an experimental investigation of heat transfer characteristics of a closed-loop two-phase thermosyphon (CLTPT) system with a structured heating surface. A novel structured heating surface, i.e., segmented finned microchannels, has been used to promote heat transfer rate, and its performance has been compared with that of plane heating surface. Compared with the plane heating surface, the segmented finned structured heating surface produces an enhancement of 157% in heat transfer coefficient (HTC), whereas it produces a 145% enhancement in the critical heat flux (CHF). The present structured surface also delivers better heat transfer performance compared with the available data in the literature.
References
1.
Gurrum
, S. P.
, Suman
, S. K.
, Joshi
, Y. K.
, and Fedorov
, A. G.
, 2004
, “Thermal Issues in Next-Generation Integrated Circuits
,” IEEE Trans. Device Mater. Reliab.
, 4
(4
), pp. 709
–714
. 2.
Garimella
, S. V.
, Fleischer
, A. S.
, Murthy
, J. Y.
, Keshavarzi
, A.
, Prasher
, R.
, Patel
, C.
, Bhavnani
, S. H.
, et al, 2008
, “Thermal Challenges in Next-Generation Electronic Systems
,” IEEE Trans. Compon. Packag. Technol.
, 31
(4
), pp. 801
–815
. 3.
Franco
, A.
, and Filippeschi
, S.
, 2011
, “Closed Loop Two-Phase Thermosyphon of Small Dimensions: A Review of Experimental Results
,” Microgravity Sci. Technol.
, 24
(3
), pp. 165
–179
. 4.
Cohen
, H.
, and Bayley
, F. J.
, 1955
, “Heat-Transfer Problems of Liquid-Cooled Gas-Turbine Blades
,” Proc. Inst. Mech. Eng.
, 169
(1
), pp. 1063
–1080
. 5.
Samba
, A.
, Louahlia-Gualous
, H.
, Le Masson
, S.
, and Nörterhäuser
, D.
, 2013
, “Two-Phase Thermosyphon Loop for Cooling Outdoor Telecommunication Equipments
,” Appl. Therm. Eng.
, 50
(1
), pp. 1351
–1360
. 6.
Shiraishi
, M.
, Kikuchi
, K.
, and Yamanishi
, T.
, 1981
, “Investigation of Heat Transfer Characteristics of
a Two-Phase Closed Thermosyphon
,” Advances in Heat Pipe Technology, Proceedings of the IVth International Heat Pipe Conference
, London, UK
, Sept. 7–10
, pp. 95
–104
.7.
Mudawar
, I.
, 2001
, “Assessment of High Heat Flux Thermal Management Schemes
,” IEEE Trans. Compon. Packag. Technol.
, 24
(2
), pp. 122
–141
. 8.
Yeo
, J.
, Yamashita
, S.
, Hayashida
, M.
, and Koyama
, S.
, 2014
, “A Loop Thermosyphon Type Cooling System for High Heat Flux
,” J. Electron. Cool. Therm. Control
, 1
(04
), pp. 128
–137
. 9.
Chang
, C. C.
, Kuo
, S. C.
, Ke
, M. T.
, and Chen
, S. L.
, 2010
, “Two-Phase Closed-Loop Thermosyphon for Electronic Cooling
,” Exp. Heat Transfer
, 23
(2
), pp. 144
–156
. 10.
Liu
, Q.
, Fukuda
, K.
, and Sutopo
, P. F.
, 2014
, “Experimental Study on Thermosyphon for Shipboard High-Power Electronics Cooling System
,” Heat Transfer Eng.
, 35
(11–12
), pp. 1077
–1083
. 11.
Park
, Y. J.
, Kang
, H. K.
, and Kim
, C. J.
, 2002
, “Heat Transfer Characteristics of a Two- Phase Closed Thermosyphon to the Fill Charge Ratio
,” Int. J. Heat Mass Transfer
, 45
(23
), pp. 4655
–4661
. 12.
Kondou
, C.
, Umemoto
, S.
, Koyama
, S.
, and Mitooka
, Y.
, 2017
, “Improving the Heat Dissipation Performance of a Looped Thermosyphon Using Low-GWP Volatile Fluids R1234ze (Z) and R1234ze (E) With a Super-Hydrophilic Boiling Surface
,” Appl. Therm. Eng.
, 118
, pp. 147
–158
. 13.
Khodabandeh
, R.
, 2004
, “Thermal Performance of a Closed Advanced Two-Phase Thermosyphon Loop for Cooling of Radio Base Stations at Different Operating Conditions
,” Appl. Therm. Energy
, 24
(17–18
), pp. 2643
–2655
. 14.
Jafari
, D.
, Marco
, P. D.
, Filippeschi
, S.
, and Franco
, A.
, 2017
, “An Experimental Investigation on the Evaporation and Condensation Heat Transfer of Two-Phase Closed Thermosyphons
,” Exp. Therm. Fluid. Sci.
, 88
, pp. 111
–123
. 15.
He
, H.
, Furusato
, K.
, Yamada
, M.
, Shen
, B.
, Hidaka
, S.
, Kohno
, M.
, Takahashi
, K.
, and Takata
, Y.
, 2017
, “Efficiency Enhancement of a Loop Thermosyphon on Mixed Wettability Evaporator Surface
,” Appl. Therm. Energy
, 123
(1
), pp. 1245
–1254
. 16.
Prajapati
, Y. K.
, Pathak
, M.
, and Khan
, M. K.
, 2015
, “A Comparative Study of Flow Boiling Heat Transfer in Three Different Configurations of Microchannels
,” Int. J. Heat Mass Transfer
, 85
, pp. 711
–722
. 17.
Cooke
, D.
, and Kandlikar
, S. G.
, 2012
, “Effect of Open Microchannel Geometry on Pool Boiling Enhancement
,” Int. J. Heat Mass Transfer
, 55
(4
), pp. 1004
–1013
. 18.
Gouda
, R. K.
, Pathak
, M.
, and Khan
, M. K.
, 2018
, “Pool Boiling Heat Transfer Enhancement With Segmented Finned Microchannels Structured Surface
,” Int. J. Heat Mass Transfer
, 127
, pp. 39
–50
. 19.
Matthew
, L.
, Kanargi
, O. B.
, and Lee
, P. S.
, 2016
, “Effects of Varying Oblique Angles on Flow Boiling Heat Transfer and Pressure Characteristics in Oblique-Finned Microchannels
,” Int. J. Heat Mass Transfer
, 100
, pp. 646
–660
. 20.
Kutateladze
, S. S.
, 1951
, “A Hydrodynamic Theory of Changes in a Boiling Process Under Free Convection
,” Not. Acad. Sci. Dep. Tech. Sci.
, 4
, pp. 529
–536
.Copyright © 2021 by ASME
You do not currently have access to this content.