Abstract

The need for freshwater grows by the day, yet the amount of freshwater accessible worldwide is insufficient to fulfil it. The distillation of saltwater could be a way to meet the demand for freshwater. The current study investigates the experimental performance enhancement of a tubular solar still (TSS) with various rotating wick materials. A rotating drum consisting of multiple wick materials (black bamboo cotton fabric, jute cloth, terry cotton, and polyester) was placed within the tube to increase the evaporation rate. The basin water depth was set at 2 cm to increase the productivity of distillate water. The black bamboo cotton fabric wick outperformed the jute cloth wick, terry cotton wick, polyester wick, and conventional tubular solar still (CTSS) by 5.7%, 12.44%, 19.94%, and 48%, respectively, while maintaining the wicked drum speed around 1 rpm. Because of its moisture-wicking nature, the efficiency of a TSS with a rotating wick made of black bamboo cotton fabric is 50.65% greater than that of a CTSS. Compared with other wick materials, it had a high absorption and evaporation rate. Furthermore, the performance of TSS was investigated, using a black bamboo cotton fabric wicked drum at 0.3, 0.5, 1, 2, and 3 rpm. The studies indicated that a wicked drum speed of 0.5 rpm improves the productivity of approximately 7.474 kg/m2. Furthermore, the average TSS efficiency was increased by 70.8% compared with the CTSS.

References

1.
Moukhtar
,
I.
,
El Dein
,
A. Z.
,
Elbaset
,
A. A.
, and
Mitani
,
Y.
,
2021
,
Solar Energy Technologies, Design, Modeling, and Economics
,
Springer
,
New York
.
2.
Ahsan
,
A.
,
Shafiul Islam
,
K. M.
,
Fukuhara
,
T.
, and
Ghazali
,
A. H.
,
2010
, “
Experimental Study on Evaporation, Condensation and Production of a New Tubular Solar Still
,”
Desalination
,
260
(
1–3
), pp.
172
179
.
3.
Chen
,
Z.
,
Yao
,
Y.
,
Zheng
,
Z.
,
Zheng
,
H.
,
Yang
,
Y.
,
Hou
,
L.
, and
Chen
,
G.
,
2013
, “
Analysis of the Characteristics of Heat and Mass Transfer of a Three-Effect Tubular Solar Still and Experimental Research
,”
Desalination
,
330
, pp.
42
48
.
4.
Porta-Gándara
,
M. A.
,
Fernández-Zayas
,
J. L.
, and
Chargoy-del-Valle
,
N.
,
2020
, “
Solar Still Distillation Enhancement Through Water Surface Perturbation
,”
Sol. Energy
,
196
, pp.
312
318
.
5.
Zanganeh
,
P.
,
Goharrizi
,
A. S.
,
Ayatollahi
,
S.
,
Feilizadeh
,
M.
, and
Dashti
,
H.
,
2020
, “
Efficiency Improvement of Solar Stills Through Wettability Alteration of the Condensation Surface: An Experimental Study
,”
Appl. Energy
,
268
, p.
114923
.
6.
Abdullah
,
A. S.
,
Younes
,
M. M.
,
Omara
,
Z. M.
, and
Essa
,
F. A.
,
2020
, “
New Design of Trays Solar Still With Enhanced Evaporation Methods—Comprehensive Study
,”
Sol. Energy
,
203
, pp.
164
174
.
7.
Jahanpanah
,
M.
,
Sadatinejad
,
S. J.
,
Kasaeian
,
A.
,
Jahangir
,
M. H.
, and
Sarrafha
,
H.
,
2021
, “
Experimental Investigation of the Effects of Low-Temperature Phase Change Material on Single-Slope Solar Still
,”
Desalination
,
499
, p.
114799
.
8.
Kabeel
,
A. E.
,
El-Maghlany
,
W. M.
,
Abdelgaied
,
M.
, and
Abdel-Aziz
,
M. M.
,
2020
, “
Performance Enhancement of Pyramid-Shaped Solar Stills Using Hollow Circular Fins and Phase Change Materials
,”
J. Energy Storage
,
31
, p.
101610
.
9.
Mohamed
,
A. F.
,
Hegazi
,
A. A.
,
Sultan
,
G. I.
, and
El-Said
,
E. M. S.
,
2019
, “
Augmented Heat and Mass Transfer Effect on Performance of a Solar Still Using Porous Absorber: Experimental Investigation and Exergetic Analysis
,”
Appl. Therm. Eng.
,
150
, pp.
1206
1215
.
10.
Shehata
,
A. I.
,
Kabeel
,
A. E.
,
Khairat Dawood
,
M. M.
,
Elharidi
,
A. M.
,
Abd_Elsalam
,
A.
,
Ramzy
,
K.
, and
Mehanna
,
A.
,
2020
, “
Enhancement of the Productivity for Single Solar Still With Ultrasonic Humidifier Combined With Evacuated Solar Collector: An Experimental Study
,”
Energy Convers. Manage.
,
208
, p.
112592
.
11.
Fallahzadeh
,
R.
,
Aref
,
L.
,
Gholamiarjenaki
,
N.
,
Nonejad
,
Z.
, and
Saghi
,
M.
,
2020
, “
Experimental Investigation of the Effect of Using Water and Ethanol as Working Fluid on the Performance of Pyramid-Shaped Solar Still Integrated With Heat Pipe Solar Collector
,”
Sol. Energy
,
207
, pp.
10
21
.
12.
Amiri
,
H.
,
Aminy
,
M.
,
Lotfi
,
M.
, and
Jafarbeglo
,
B.
,
2021
, “
Energy and Exergy Analysis of a New Solar Still Composed of Parabolic Trough Collector With Built-in Solar Still
,”
Renewable Energy
,
163
, pp.
465
479
.
13.
Younis
,
M.
,
Habchi
,
C.
,
Ahmad
,
M. N.
, and
Ghali
,
K.
,
2020
, “
Optimization of the Performance of a Solar Still Assisted by a Rotating Drum With a Rough Surface
,”
Sol. Energy
,
211
, pp.
847
865
.
14.
Saravanan
,
A.
, and
Murugan
,
M.
,
2020
, “
Performance Evaluation of Square Pyramid Solar Still With Various Vertical Wick Materials—An Experimental Approach
,”
Therm. Sci. Eng. Prog.
,
19
, p.
100581
.
15.
Murugan
,
M.
,
Saravanan
,
A.
,
Murali
,
G.
,
Kumar
,
P.
, and
Reddy
,
V. S. N.
,
2021
, “
Enhancing Productivity of V-Trough Solar Water Heater Incorporated Flat Plate Wick-Type Solar Water Distillation System
,”
ASME J. Heat Transfer
,
143
(
3
), p.
032001
.
16.
Dumka
,
P.
,
Chauhan
,
R.
, and
Mishra
,
D. R.
,
2020
, “
Experimental and Theoretical Evaluation of a Conventional Solar Still Augmented With Jute Covered Plastic Balls
,”
J. Energy Storage
,
32
, p.
101874
.
17.
Murugan
,
M.
,
Saravanan
,
A.
,
Kumar
,
P.
,
Siva Nagi Reddy
,
V.
, and
Arif
,
A.
,
2021
, “
An Overview About Influence of Wick Materials on Heat and Mass Transfer in Solar Desalination Systems
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
1057
(
1
), p.
012044
.
18.
Alshammari
,
F.
,
Elashmawy
,
M.
, and
Ahmed
,
M. M. Z.
,
2021
, “
Cleaner Production of Freshwater Using Multi-Effect Tubular Solar Still
,”
J. Clean. Prod.
,
281
, p.
125301
.
19.
Yan
,
T.
,
Xie
,
G.
,
Liu
,
H.
,
Wu
,
Z.
, and
Sun
,
L.
,
2020
, “
CFD Investigation of Vapor Transportation in a Tubular Solar Still Operating Under Vacuum
,”
Int. J. Heat Mass Transfer
,
156
, p.
119917
.
20.
Kabeel
,
A. E.
,
Harby
,
K.
,
Abdelgaied
,
M.
, and
Eisa
,
A.
,
2020
, “
Augmentation of a Developed Tubular Solar Still Productivity Using Hybrid Storage Medium and CPC: An Experimental Approach
,”
J. Energy Storage
,
28
, p.
101203
.
21.
Kabeel
,
A. E.
,
Harby
,
K.
,
Abdelgaied
,
M.
, and
Eisa
,
A.
,
2020
, “
Performance of the Modified Tubular Solar Still Integrated With Cylindrical Parabolic Concentrators
,”
Sol. Energy
,
204
, pp.
181
189
.
22.
Sathyamurthy
,
R.
,
Mageshbabu
,
D.
,
Madhu
,
B.
,
Muthu Manokar
,
A.
,
Rajendra Prasad
,
A.
, and
Sudhakar
,
M.
,
2020
, “
Influence of Fins on the Absorber Plate of Tubular Solar Still—An Experimental Study
,”
Mater. Today Proc.
,
46
(
9
), pp.
3270
3274
.
23.
Abdelgaied
,
M.
,
Harby
,
K.
, and
Eisa
,
A.
,
2021
, “
Performance Improvement of Modified Tubular Solar Still by Employing Vertical and Inclined Pin Fins and External Condenser: An Experimental Study
,”
Environ. Sci. Pollut. Res.
,
28
(
11
), pp.
13504
13514
.
24.
Kabeel
,
A. E.
,
Abdelgaied
,
M.
,
Harby
,
K.
, and
Eisa
,
A.
,
2020
, “
Augmentation of Diurnal and Nocturnal Distillate of Modified Tubular Solar Still Having Copper Tubes Filled With PCM in the Basin
,”
J. Energy Storage
,
32
, p.
101992
.
25.
Kabeel
,
A. E.
,
Sathyamurthy
,
R.
,
Manokar
,
A. M.
,
Sharshir
,
S. W.
,
Essa
,
F. A.
, and
Elshiekh
,
A. H.
,
2020
, “
Experimental Study on Tubular Solar Still Using Graphene Oxide Nano Particles in Phase Change Material (NPCM’s) for Fresh Water Production
,”
J. Energy Storage
,
28
, p.
101204
.
26.
Tiwari
,
G. N.
, and
Kumar
,
A.
,
1988
, “
Nocturnal Water Production by Tubular Solar Stills Using Waste Heat to Preheat Brine
,”
Desalination
,
69
(
3
), pp.
309
318
.
27.
Kabeel
,
A. E.
,
Sharshir
,
S. W.
,
Abdelaziz
,
G. B.
,
Halim
,
M. A.
, and
Swidan
,
A.
,
2019
, “
Improving Performance of Tubular Solar Still by Controlling the Water Depth and Cover Cooling
,”
J. Clean. Prod.
,
233
, pp.
848
856
.
28.
Abdullah
,
A. S.
,
Omara
,
Z. M.
,
Essa
,
F. A.
,
Younes
,
M. M.
,
Shanmugan
,
S.
,
Abdelgaied
,
M.
,
Amro
,
M. I.
,
Kabeel
,
A. E.
, and
Farouk
,
W. M.
,
2021
, “
Improving the Performance of Trays Solar Still Using Wick Corrugated Absorber, Nano-Enhanced Phase Change Material and Photovoltaics-Powered Heaters
,”
J. Energy Storage
,
40
, p.
102782
.
29.
Abdelgaied
,
M.
,
Zakaria
,
Y.
,
Kabeel
,
A. E.
, and
Essa
,
F. A.
,
2021
, “
Improving the Tubular Solar Still Performance Using Square and Circular Hollow Fins With Phase Change Materials
,”
J. Energy Storage
,
38
, p.
102564
.
30.
Kumar
,
A.
, and
Anand
,
J. D.
,
1992
, “
Modelling and Performance of a Tubular Multiwick Solar Still
,”
Energy
,
17
(
11
), pp.
1067
1071
.
31.
Kabeel
,
A. E.
,
Harby
,
K.
,
Abdelgaied
,
M.
, and
Eisa
,
A.
,
2021
, “
Performance Improvement of a Tubular Solar Still Using V-Corrugated Absorber With Wick Materials: Numerical and Experimental Investigations
,”
Sol. Energy
,
217
, pp.
187
199
.
32.
Abdullah
,
A. S.
,
Essa
,
F. A.
,
Omara
,
Z. M.
,
Rashid
,
Y.
,
Hadj-Taieb
,
L.
,
Abdelaziz
,
G. B.
, and
Kabeel
,
A. E.
,
2019
, “
Rotating-Drum Solar Still With Enhanced Evaporation and Condensation Techniques: Comprehensive Study
,”
Energy Convers. Manage.
,
199
, p.
112024
.
33.
Essa
,
F. A.
,
Abdullah
,
A. S.
, and
Omara
,
Z. M.
,
2021
, “
Improving the Performance of Tubular Solar Still Using Rotating Drum—Experimental and Theoretical Investigation
,”
Process Saf. Environ. Prot.
,
148
, pp.
579
589
.
34.
Holman
,
J. P.
,
1978
,
Experimental Methods For Engineers
,
McGraw-Hill
,
New York
.
35.
Gericke
,
A.
, and
Van der Pol
,
J.
,
2010
, “
A Comparative Study of Regenerated Bamboo, Cotton and Viscose Rayon Fabrics. Part 1: Selected Comfort Properties
,”
J. Fam. Ecol. Consum. Sci.
,
38
(
1
), pp.
63
73
. https://hdl.handle.net/10520/EJC33703
36.
WHO
,
2017
,
Guidelines for Drinking-Water Quality, 4th Edition, Incorporating the 1st Addendum
,
World Health Organization
,
Geneva
.
You do not currently have access to this content.