Abstract

Nanofluids consist of nanoparticles made of materials with high thermal conductivity suspended in a base fluid such as water. In theory, the presence of thermally conductive nanoparticles in a base fluid improves the heat transfer performance of the resulting nanofluid. This article numerically investigates the impact of nanoparticles on the energy performance of a district cooling system. The current work focuses on using Cu–water nanofluid as the working fluid for the secondary chilled water loop. It examines the effect of varying the nanoparticles concentration, nanofluid flowrate, and return temperature on the system energy performance. The numerical model is built using the engineering equation solver (EES) and validated using operational data obtained from the McQuay chilled water system operating in one of the university central facility plants. In the current numerical model, the Reynolds number in the shell side of the heat exchanger is varied between 2200 and 8800 at a volume fraction of 0.02. The result shows that for a fixed cooling capacity of 280 kW, the Cu–water nanofluid reduced the mass flowrate by 4.8% and the corresponding pump work input by 33.6%. This improved energy performance of the circulating water reduced the overall chiller system work input by 3.8% and increased the corresponding system coefficient of performance (COP) by 3.9%. The current findings reveal the potential impact and opportunity of nanofluids on the effectiveness of the district cooling system chiller water loop and the associated overall energy performance.

References

1.
Seyam
,
S.
,
2018
, “Types of HVAC Systems,”
HVAC System
,
M. S.
Kandelousi
, ed.,
IntechOpen
,
London
, pp.
50
66
.
2.
D&R International, LTD
,
2012
, “Building Sector,”
2011 Building Energy Data Book
,
U.S. Department of Energy, Energy Efficiency & Renewable Energy
,
USA
, https://ieer.org/wp/wp-content/uploads/2012/03/DOE-2011-Buildings-Energy-DataBook-BEDB.pdf
3.
Fahkroo
,
M. I.
,
Al-Awainati
,
N.
,
Musharavati
,
F.
,
Pokherel
,
S.
, and
Gabbar
,
H. A.
,
2013
, “
Operations Optimization Towards High Performance Cooling in Commercial Buildings
,”
2013 IEEE International Conference on Smart Energy Grid Engineering (SEGE)
,
Oshawa, ON
,
Canada, Aug. 28–30
, IEEE, pp.
1
6
.
4.
Vakiloroaya
,
V.
,
Samali
,
B.
,
Fakhar
,
A.
, and
Pishghadam
,
K.
,
2014
, “
A Review of Different Strategies for HVAC Energy Saving
,”
Energy Convers. Manage.
,
77
, pp.
738
754
.
5.
Hatami
,
M.
,
Domairry
,
G.
, and
Mirzababaei
,
S. N.
,
2017
, “
Experimental Investigation of Preparing and Using the H2O Based Nanofluids in the Heating Process of HVAC System Model
,”
Int. J. Hydrogen Energy
,
42
(
12
), pp.
7820
7825
.
6.
Bhanvase
,
B. A.
,
Barai
,
D. P.
,
Sonawane
,
S. H.
,
Kumar
,
N.
, and
Sonawane
,
S. S.
,
2018
,
Handbook of Nanomaterials for Industrial Applications
, 1st ed.,
C. M. Hussain, ed., Elsevier
,
Maharashtra, India
, pp.
739
750
.
7.
Thankappan
,
S.
,
Abraham
,
J.
,
George
,
S. C.
, and
Thomas
,
S.
,
2018
, “Rheological Characterization of Nanocomposites,”
Characterization of Nanomaterials
,
S. M. Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal and S. Thomas, eds., Elsevier Ltd.
,
Kottayam, India
, pp.
167
189
.
8.
Okonkwo
,
E. C.
,
Adun
,
H.
,
Babatunde
,
A. A.
,
Abid
,
M.
, and
Ratlamwala
,
T. A. H.
,
2020
, “
Entropy Generation Minimization in a Parabolic Trough Collector Operating with SiO2—Water Nanofluids Using Genetic Algorithm and Artificial Neural Network
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
3
), p.
031007
.
9.
Okonkwo
,
E. C.
,
Wole-osho
,
I.
,
Kavaz
,
D.
,
Abid
,
M.
, and
Al-ansari
,
T.
,
2020
, “
Thermodynamic Evaluation and Optimization of a Flat Plate Collector Operating With Alumina and Iron Mono and Hybrid Nanofluids
,”
Sustain. Energy Technol. Assess.
,
37
, p.
100636
.
10.
Qi
,
C.
,
Luo
,
T.
,
Liu
,
M.
,
Fan
,
F.
, and
Yan
,
Y.
,
2019
, “
Experimental Study on the Flow and Heat Transfer Characteristics of Nanofluids in Double-Tube Heat Exchangers Based on Thermal Efficiency Assessment
,”
Energy Convers. Manage.
,
197
, p.
111877
.
11.
Vishnuprasad
,
S.
,
Haribabu
,
K.
, and
Perarasu
,
V. T.
,
2019
, “
Experimental Study on the Convective Heat Transfer Performance and Pressure Drop of Functionalized Graphene Nanofluids in Electronics Cooling System
,”
Heat Mass Transfer
,
55
(
8
), pp.
2221
2234
.
12.
Elsaid
,
A. M.
,
2019
, “
Experimental Study on the Heat Transfer Performance and Friction Factor Characteristics of Co3O4 and Al2O3 Based H2O/(CH2OH)2 Nanofluids in a Vehicle Engine Radiator
,”
Int. Commun. Heat Mass Transfer
,
108
, p.
104263
.
13.
Ding
,
M.
,
Liu
,
C.
, and
Rao
,
Z.
,
2019
, “
Experimental Investigation on Heat Transfer Characteristic of TiO2-H2O Nano Fluid in Microchannel for Thermal Energy Storage
,”
Appl. Therm. Eng.
,
160
(
6
), p.
114024
.
14.
Rahman
,
S.
,
Issa
,
S.
,
Said
,
Z.
,
El Haj Assad
,
M.
,
Zadeh
,
R.
, and
Barani
,
Y.
,
2019
, “
Performance Enhancement of a Solar Powered Air Conditioning System Using Passive Techniques and SWCNT /R-407c Nano Refrigerant
,”
Case Stud. Therm. Eng.
,
16
, p.
100565
.
15.
Zainith
,
P.
, and
Mishra
,
N. K.
,
2021
, “
A Comparative Study on Thermal-Hydraulic Performance of Different Non-Newtonian Nanofluids Through an Elliptical Annulus
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p.
051027
.
16.
Abedini
,
E.
,
Mohammadi Karachi
,
A.
,
Hamidi Jahromi
,
R.
, and
DolatiAsl
,
K.
,
2020
, “
Numerical Investigation of Flow Boiling of Refrigerant-Based Nanofluids and Proposing Correlations for Heat Transfer
,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
,
234
(
4
), pp.
386
393
.
17.
Mohan
,
K.
,
Sundararaj
,
S.
,
Kannan
,
K. G.
, and
Kannan
,
A.
,
2020
, “
Experimental Analysis on Refrigeration System Using CNT, Gold & HAUCL4 Nano Fluids
,”
Mater. Today: Proc.
,
33
(
1
), pp.
360
366
.
18.
Aprea
,
C.
,
Greco
,
A.
,
Maiorino
,
A.
, and
Masselli
,
C.
,
2020
, “
The Use of Barocaloric Effect for Energy Saving in a Domestic Refrigerator With Ethylene-Glycol Based Nanofluids: A Numerical Analysis and a Comparison With a Vapor Compression Cooler
,”
Energy
,
190
, p.
116404
.
19.
Nourafkan
,
E.
,
Asachi
,
M.
,
Jin
,
H.
,
Wen
,
D.
, and
Ahmed
,
W.
,
2019
, “
Stability and Photo-Thermal Conversion Performance of Binary Nanofluids for Solar Absorption Refrigeration Systems
,”
Renewable Energy
,
140
, pp.
24
273
.
20.
Pourfayaz
,
F.
,
Imani
,
M.
,
Mehrpooya
,
M.
, and
Shirmohammadi
,
R.
,
2019
, “
Process Development and Exergy Analysis of a Novel Hybrid Fuel Cell-Absorption Refrigeration System Utilizing Nanofluid as the Absorbent Liquid
,”
Int. J. Refrig.
,
97
, pp.
31
41
.
21.
Jiang
,
W.
,
Li
,
S.
,
Yang
,
L.
, and
Du
,
K.
,
2019
, “
Experimental Investigation on Performance of Ammonia Absorption Refrigeration System With TiO2 Nanofluid
,”
Int. J. Refrig.
,
98
, pp.
80
88
.
22.
Aramesh
,
M.
,
Pourfayaz
,
F.
,
Haghir
,
M.
,
Kasaeian
,
A.
, and
Ahmadi
,
M. H.
,
2019
, “
Investigating the Effect of Using Nanofluids on the Performance of a Double-Effect Absorption Refrigeration Cycle Combined With a Solar Collector
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
234
(
7
), pp.
981
993
.
23.
Ahmed
,
M. S.
, and
Elsaid
,
A. M.
,
2019
, “
Effect of Hybrid and Single Nanofluids on the Performance Characteristics of Chilled Water Air Conditioning System
,”
Appl. Therm. Eng.
,
163
, p.
114398
.
24.
Jeyakumar
,
N.
,
Uthranarayan
,
C.
, and
Narayanasamy
,
B.
,
2019
, “
Energy Conservation in the Refrigeration System Through Improvement of Coefficient of Performance and Power Consumption Reduction Using Nanofluids
,”
Int. J. Ambient Energy
, pp.
1
19
.
25.
Soliman
,
A. M. A.
,
Rahman
,
A. K. A.
, and
Ookawara
,
S.
,
2018
, “
Enhancement of Vapor Compression Cycle Performance Using Nanofluids
,”
J. Therm. Anal. Calorim.
,
135
(
2
), pp.
1507
1520
.
26.
Akel
,
A.
,
Orlando
,
A.
,
Gómez
,
C.
,
Pedone
,
E.
,
Filho
,
B.
,
Alberto
,
J.
, and
Parise
,
R.
,
2016
, “
Experimental Evaluation of SWCNT-Water Nanofluid as a Secondary Fluid in a Refrigeration System
,”
Appl. Therm. Eng.
,
111
, pp.
1487
1492
.
27.
Bhattad
,
A.
,
Sarkar
,
J.
, and
Ghosh
,
P.
,
2017
, “
Exergetic Analysis of Plate Evaporator Using Hybrid Nanofluids as Secondary Refrigerant for Low-Temperature Applications
,”
Int. J. Exergy
,
24
(
1
), pp.
1
20
.
28.
Basbous
,
N.
,
Taqi
,
M.
, and
Janan
,
M. A.
,
2017
, “
Thermal Performances Analysis of a Parabolic Trough Solar Collector Using Different Nanofluids
,”
Proceedings of 2016 International Renewable and Sustainable Energy Conference, IRSEC 2016
,
Marrakech, Morocco
,
Nov. 14–17
, pp.
322
326
.
29.
Liu
,
M. S.
,
Lin
,
M. C. C.
, and
Wang
,
C. C.
,
2011
, “
Enhancements of Thermal Conductivities With Cu, CuO, and Carbon Nanotube Nanofluids and Application of MWNT/Water Nanofluid on a Water Chiller System
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
13
.
30.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2018
, “
Enhancing the Performance of Parabolic Trough Collectors Using Nanofluids and Turbulators
,”
Renewable Sustainable Energy Rev.
,
91
(
Jan.
), pp.
358
375
.
31.
Hatami
,
M.
,
Geng
,
J.
, and
Jing
,
D.
,
2018
, “
Enhanced Efficiency in Concentrated Parabolic Solar Collector (CPSC) With a Porous Absorber Tube Filled With Metal Nanoparticle Suspension
,”
Green Energy Environ.
,
3
(
2
), pp.
129
137
.
32.
Koçak Soylu
,
S.
,
Atmaca
,
İ
,
Asiltürk
,
M.
, and
Doğan
,
A.
,
2019
, “
Improving Heat Transfer Performance of an Automobile Radiator Using Cu and Ag Doped TiO2 Based Nanofluids
,”
Appl. Therm. Eng.
,
157
, p.
113743
.
33.
Xuan
,
Y.
, and
Li
,
Q.
,
2003
, “
Investigation on Convective Heat Transfer and Flow Features of Nanofluids
,”
ASME J. Heat Transfer
,
125
(
1
), pp.
151
155
.
34.
Bellos
,
E.
,
Tzivanidis
,
C.
, and
Tsimpoukis
,
D.
,
2018
, “
Thermal, Hydraulic and Exergetic Evaluation of a Parabolic Trough Collector Operating With Thermal Oil and Molten Salt Based Nanofluids
,”
Energy Convers. Manage.
,
156
(
7
), pp.
388
402
.
35.
Hussein
,
A. M.
,
Bakar
,
R. A.
,
Kadirgama
,
K.
, and
Sharma
,
K. V.
,
2013
, “
Experimental Measurements of Nanofluids Thermal Properties
,”
Int. J. Automot. Mech. Eng.
,
7
, pp.
850
863
.
36.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
37.
Azizi
,
Z.
,
Alamdari
,
A.
, and
Malayeri
,
M. R.
,
2015
, “
Convective Heat Transfer of Cu—Water Nanofluid in a Cylindrical Microchannel Heat Sink
,”
Energy Convers. Manage.
,
101
, pp.
515
524
.
38.
Shin
,
D.
, and
Banerjee
,
D.
,
2011
, “
Enhancement of Specific Heat Capacity of High-Temperature Silica-Nanofluids Synthesized in Alkali Chloride Salt Eutectics for Solar Thermal-Energy Storage Applications
,”
Int. J. Heat Mass Transfer
,
54
(
5–6
), pp.
1064
1070
.
39.
Bruggeman
,
D. A. G.
,
1935
, “
Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen
,”
Ann. Phys.
,
416
(
7
), pp.
636
664
.
40.
Okonkwo
,
E. C.
,
Wole-Osho
,
I.
,
Kavaz
,
D.
, and
Abid
,
M.
,
2019
, “
Comparison of Experimental and Theoretical Methods of Obtaining the Thermal Properties of Alumina/Iron Mono and Hybrid Nanofluids
,”
J. Mol. Liq.
,
292
, p.
111377
.
41.
Raja
,
R. A. A.
,
Sunil
,
J.
,
Hamilton
,
M.
, and
Davis
,
J.
,
2018
, “
Estimation of Thermal Conductivity of Nanofluids Using Theoretical Correlations
,”
Int. J. Appl. Eng. Res.
,
13
(
10
), pp.
7932
7936
.
42.
Sorgulu
,
F.
, and
Dincer
,
I.
,
2018
, “
Design and Analysis of a Solar Tower Power Plant Integrated With Thermal Energy Storage System for Cogeneration
,”
Int. J. Energy Res.
,
43
(
12
), pp.
6151
6160
.
43.
Nguyen
,
C. T.
,
Desgranges
,
F.
,
Galanis
,
N.
,
Roy
,
G.
,
Maré
,
T.
,
Boucher
,
S.
, and
Angue Mintsa
,
H.
,
2008
, “
Viscosity Data for Al2O3-Water Nanofluid-Hysteresis: Is Heat Transfer Enhancement Using Nanofluids Reliable?
,”
Int. J. Therm. Sci.
,
47
(
2
), pp.
103
111
.
44.
Nellis
,
G.
, and
Klein
,
S. A.
,
2012
,
Heat Transfer
,
Cambridge University Press
,
New York
.
45.
Kücük
,
H.
,
Ünverdi
,
M.
, and
Senan Yılmaz
,
M.
,
2019
, “
Experimental Investigation of Shell Side Heat Transfer and Pressure Drop in a Mini-Channel Shell and Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
143
, p.
118493
.
46.
Kakaç
,
S.
,
Liu
,
H.
, and
Pramuanjaroenkij
,
A.
,
2002
,
Heat Exchangers Selection, Rating, and Thermal Design
, 2nd ed.,
CRC Press
,
Coral Gables, FL
.
47.
Kapale
,
U. C.
, and
Chand
,
S.
,
2006
, “
Modeling for Shell-Side Pressure Drop for Liquid Flow in Shell-and-Tube Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), p.
601
610
.
48.
Fraas
,
A. P.
,
1989
,
Heat Exchanger Design
,
John Wiley & Sons
,
Canada
.
49.
Gesellschaft
,
V.
, and
Chemieingenieurwesen
,
G. V. U.
,
2010
,
VDI Heat Atlas
, 2nd ed.,
Springer
,
Dusseldorf
.
50.
Tahmasebi Sulgani
,
M.
, and
Karimipour
,
A.
,
2019
, “
Improve the Thermal Conductivity of 10w40-Engine Oil at Various Temperature by Addition of Al2O3/Fe2O3 Nanoparticles
,”
J. Mol. Liq.
,
283
, pp.
660
666
.
51.
Okonkwo
,
E. C.
,
Wole-Osho
,
I.
,
Almanassra
,
I. W.
,
Abdullatif
,
Y. M.
, and
Al-Ansari
,
T.
,
2020
, “
An Updated Review of Nanofluids in Various Heat Transfer Devices
,”
J. Therm. Anal. Calorim.
,
145
(
6
), pp.
2817
2872
.
52.
Mahbubul
,
I. M.
,
Saidur
,
R.
,
Amalina
,
M. A.
,
Elcioglu
,
E. B.
, and
Okutucu-Ozyurt
,
T.
,
2015
, “
Effective Ultrasonication Process for Better Colloidal Dispersion of Nanofluid
,”
Ultrason. Sonochem.
,
26
, pp.
361
369
.
53.
Xia
,
G.
,
Jiang
,
H.
,
Liu
,
R.
, and
Zhai
,
Y.
,
2014
, “
Effects of Surfactant on the Stability and Thermal Conductivity of Al2O3/De-Ionized Water Nanofluids
,”
Int. J. Therm. Sci.
,
84
, pp.
118
124
.
54.
Choudhary
,
R.
,
Khurana
,
D.
,
Kumar
,
A.
, and
Subudhi
,
S.
,
2017
, “
Stability Analysis of Al2O3/Water Nanofluids
,”
J. Exp. Nanosci.
,
12
(
1
), pp.
140
151
.
55.
Yu
,
F.
,
Chen
,
Y.
,
Liang
,
X.
,
Xu
,
J.
,
Lee
,
C.
,
Liang
,
Q.
,
Tao
,
P.
, and
Deng
,
T.
,
2017
, “
Dispersion Stability of Thermal Nanofluids
,”
Prog. Nat. Sci.: Mater. Int.
,
27
(
5
), pp.
531
542
.
You do not currently have access to this content.