Abstract

Composite passive insulation technology has been proved to be an effective method to reduce heat leakage into the cryogenic storage tank. However, the current related research mainly focused on liquid hydrogen (LH2). The thermophysical properties of different cryogenic liquids and the thermal insulation materials at different temperatures are significantly different, so whether the results related to LH2 are applicable to other cryogenic liquids remains to be further determined. In fact, the insulation technology of LH2 itself also needs further study. In this paper, a thermodynamic calculation model of a composite insulation system including hollow glass microspheres (HGMs), multilayer insulation (MLI), and self-evaporating vapor cold shield (VCS) has been established. The accuracy of the calculation model was verified by the experimental results, and a comparative study on thermodynamic characteristics of the composite thermal insulation system with liquid methane, liquid oxygen (LO2), and LH2 was carried out. The results show that the heat leakage reduction of the proposed system for liquid methane, LO2, and LH2 is 25.6%, 29.7%, and 64.9%, respectively, compared with the traditional SOFI + MLI system (1 × 10−3 Pa). The type of liquid and the insulation system structure has a relatively large influence on the VCS optimal position. While for a specific insulation system structure, the insulation material thickness, storage pressure, and hot boundary temperature have a weak influence on the VCS optimal position.

References

1.
Zhao
,
Y.
,
Gong
,
M.
,
Zhou
,
Y.
,
Dong
,
X.
, and
Shen
,
J.
,
2019
, “
Thermodynamics Analysis of Hydrogen Storage Based on Compressed Gaseous Hydrogen, Liquid Hydrogen and Cryo-Compressed Hydrogen
,”
Int. J. Hydrogen Energy
,
44
(
31
), pp.
16833
16840
.
2.
Müller
,
K.
,
2019
, “
Technologies for the Storage of Hydrogen. Part 2: Irreversible Conversion and Comparison
,”
ChemBioEng Rev.
,
6
(
3
), pp.
81
89
.
3.
Abdalla
,
A. M.
,
Hossain
,
S.
,
Nisfindy
,
O. B.
,
Azad
,
A. T.
, and
Azad
,
A. K.
,
2018
, “
Hydrogen Production, Storage, Transportation and Key Challenges With Applications: A Review
,”
Energy Convers. Manage.
,
165
, pp.
602
627
.
4.
Xu
,
X.
,
Xu
,
H.
,
Yang
,
B.
,
Chen
,
L.
, and
Wang
,
J.
,
2020
, “
A Novel Composite Insulation System of Hollow Glass Microspheres and Multilayer Insulation With Self-Evaporating Vapor Cooled Shield for Liquid Hydrogen Storage
,”
Energy Technol.
,
8
, p.
202000591
.
5.
Darr
,
S.
,
Dong
,
J.
,
Glikin
,
N.
,
Hartwig
,
J.
, and
Chung
,
J.
,
2019
, “
Rewet Temperature Correlations for Liquid Nitrogen Boiling Pipe Flows Across Varying Flow Conditions and Orientations
,”
ASME J. Therm. Sci. Eng. Appl.
,
11
(
5
), p.
051008
.
6.
Xu
,
X.
,
Hao
,
X.
,
Zheng
,
J.
,
Chen
,
L.
, and
Wang
,
J.
,
2020
, “
A High-Efficiency Liquid Hydrogen Storage System Cooled by a Fuel-Cell-Driven Refrigerator for Hydrogen Combustion Heat Recovery
,”
Energy Convers. Manage.
,
226
, p.
113496
.
7.
Zheng
,
J.
,
Chen
,
L.
,
Wang
,
P.
,
Zhang
,
J.
,
Wang
,
J.
, and
Zhou
,
Y.
,
2019
, “
A Novel Cryogenic Insulation System of Hollow Glass Microspheres and Self-Evaporation Vapor-Cooled Shield for Liquid Hydrogen Storage
,”
Front. Energy
,
4
, p.
11708
.
8.
Mer
,
S.
,
Corre
,
C.
, and
Thibault
,
J.
,
2016
, “
Active Insulation Technique Applied to the Experimental Analysis of a Thermodynamic Control System for Cryogenic Propellant Storage
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
2
), p.
021024
.
9.
Mer
,
S.
,
Fernandez
,
D.
,
Thibault
,
J.
, and
Corre
,
C.
,
2016
, “
Optimal Design of a Thermodynamic Vent System for Cryogenic Propellant Storage
,”
Cryogenics
,
80
, pp.
127
137
.
10.
Plachta
,
D.
, and
Guzik
,
M.
,
2014
, “
Cryogenic Boil-Off Reduction System
,”
Cryogenic
,
60
(
1
), pp.
62
67
.
11.
Hxa
,
C.
,
Ky
,
B.
,
Jx
,
C.
, and
Mw
,
C.
,
2020
, “
Pore Structure, Adsorption, and Water Absorption of Expanded Perlite Mortar in External Thermal Insulation Composite System During Aging
,”
Cem. Concr. Compos.
,
116
(
2
), p.
103900
.
12.
Bardy
,
E.
, and
Mollendorf
,
J.
,
2010
, “
Predicting the Thermal Conductivity of Foam Neoprene at Elevated Ambient Pressure
,”
ASME J. Therm. Sci. Eng. Appl.
,
2
(
1
), p.
014501
.
13.
Shang
,
L.
,
Lyu
,
Y.
, and
Han
,
W.
,
2019
, “
Microstructure and Thermal Insulation Property of Silica Composite Aerogel
,”
Materials
,
12
(
6
), p.
993
.
14.
Youngquist
,
R.
,
Nurge
,
M.
,
Johnson
,
W.
, and
Starr
,
S.
,
2015
, “
Modeling Transmission Effects on Multilayer Insulation
,”
ASME J. Therm. Sci. Eng. Appl.
,
7
(
2
), p.
021007
.
15.
Ping
,
W.
,
Liao
,
B.
,
An
,
Z.
,
Kaiqi
,
Y.
, and
Zhang
,
J.
,
2018
, “
Measurement and Calculation of Cryogenic Thermal Conductivity of HGMs
,”
Int. J. Heat Mass Transfer
,
129
, pp.
591
598
.
16.
Zheng
,
J.
,
Chen
,
L.
,
Wang
,
J.
,
Xi
,
X.
,
Zhu
,
H.
,
Zhou
,
Y.
, and
Wang
,
J.
,
2019
, “
Thermodynamic Analysis and Comparison of Four Insulation Schemes for Liquid Hydrogen Storage Tank
,”
Energy Convers. Manage.
,
186
, pp.
526
534
.
17.
Hastings
,
L. J.
, and
Martin
,
J. J.
,
1998
, “
Experimental Testing of a Foam/Multilayer Insulation (FMLI) Thermal Control System (TCS) for Use on a Cryogenic Upper Stage
,”
Space Technol. Appl. Int. Forum
,
420
(
1
), pp.
331
341
.
18.
Liu
,
H.
,
Hu
,
M.
,
Jiao
,
J.
, and
Li
,
Z.
,
2020
, “
Geometric Optimization of Aerogel Composites for High Temperature Thermal Insulation Applications
,”
J. Non-Cryst. Solids
,
547
, p.
120306
.
19.
Huang
,
Y.
,
Wang
,
B.
,
Zhou
,
S.
,
Wu
,
J.
,
Lei
,
G.
,
Li
,
P.
, and
Sun
,
P.
,
2017
, “
Modeling and Experimental Study on Combination of Foam and Variable Density Multilayer Insulation for Cryogen Storage
,”
Energy
,
123
, pp.
487
498
.
20.
Wang
,
B.
,
Huang
,
Y.
,
Li
,
P.
,
Sun
,
P.
,
Chen
,
Z.
, and
Wu
,
J.
,
2016
, “
Optimization of Variable Density Multilayer Insulation for Cryogenic Application and Experimental Validation
,”
Cryogenics
,
80
, pp.
154
163
.
21.
Miyakita
,
T.
,
Kitamoto
,
K.
,
Kinefuchi
,
K.
,
Saitoh
,
M.
,
Hirai
,
T.
, and
Sugita
,
H.
,
2019
, “
Development of a New MLI for Orbital Cryogenic Propulsion Systems—Thermal Performance Under One Atmosphere to a Vacuum
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
502
, p.
012062
.
22.
Liu
,
Z.
,
Li
,
Y.
,
Xie
,
F.
, and
Zhou
,
K.
,
2016
, “
Thermal Performance of Foam/MLI for Cryogenic Liquid Hydrogen Tank During the Ascent and on Orbit Period
,”
Appl. Therm. Eng.
,
98
, pp.
430
439
.
23.
Chen
,
S.
,
Jin
,
S.
,
Liu
,
D.
,
Yao
,
S.
, and
Wang
,
L.
,
2019
, “
Heat Transfer Behaviors on Combinational Insulation of Spray-On Foam and Variable Density Multilayer for Cryogenic Propellant Tanks
,”
J. Aerosp. Eng.
,
32
(
4
), p.
04019052
.
24.
Werlink
,
R.
,
Fesmire
,
J.
, and
Sass
,
J.
,
2012
, “
Vibration Considerations for Cryogenic Tanks Using Glass Bubbles Insulation
,”
AIP Conf. Proc.
,
1434
(
1
), pp.
55
65
.
25.
Sass
,
J.
,
Fesmire
,
J.
,
Nagy
,
Z.
,
Sojouner
,
S.
,
Morris
,
D.
,
Augustnowicz
,
S.
, and
Lock
,
J.
,
2008
, “
Thermal Performance Comparison of Glass Microsphere and Perlite Insulation Systems for Liquid Hydrogen Storage Tanks
,”
AIP Conf. Proc.
,
985
(
1
), pp.
1375
1382
.
26.
Chen
,
L.
,
Zheng
,
J.
,
Wu
,
X.
,
Cui
,
C.
,
Zhou
,
Y.
, and
Wang
,
J.
,
2017
, “
Research of the Cold Shield in Cryogenic Liquid Storage
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
278
(
1
), p.
012194
.
27.
Müller
,
K.
, and
Arlt
,
W.
,
2013
, “
Status and Development in Hydrogen Transport and Storage for Energy Applications
,”
Energy Technol.
,
1
(
9
), pp.
501
511
.
28.
Zheng
,
J.
,
Chen
,
L.
,
Wang
,
J.
,
Zhou
,
Y.
, and
Wang
,
J.
,
2019
, “
Thermodynamic Modelling and Optimization of Self-Evaporation Vapor Cooled Shield for Liquid Hydrogen Storage Tank
,”
Energy Convers. Manage.
,
184
, pp.
74
82
.
29.
Müller
,
K.
, and
Felderhoff
,
M.
,
2018
, “
Special Issue: Application of Hydrogen Storage Materials, Carriers, and Processes
,”
Energy Technol.
,
6
(
3
), pp.
443
444
.
30.
Wang
,
P.
,
Liao
,
B.
,
An
,
Z.
,
Yan
,
K.
, and
Zhang
,
J.
,
2019
, “
Measurement and Calculation of Cryogenic Thermal Conductivity of HGMs
,”
Int. J. Heat Mass Transfer
,
129
, pp.
591
598
.
31.
Hastings
,
L. J.
, and
Brown
,
T.
,
2002
, “
Analytical Modeling of Variable Density Multilayer Insulation for Cryogenic Storage
,”
AIP Conf. Proc.
,
613
, pp.
1557
1564
.
32.
Zheng
,
J.
,
Chen
,
L.
,
Cui
,
C.
,
Guo
,
J.
,
Zhu
,
W.
,
Zhou
,
Y.
, and
Wang
,
J.
,
2018
, “
Experimental Study on Composite Insulation System of Spray on Foam Insulation and Variable Density Multilayer Insulation
,”
Appl. Therm. Eng.
,
130
, pp.
161
168
.
You do not currently have access to this content.