Abstract

Although water is one of the key elements on the globe and accessible in a large amount, nearly one-half of the people of the globe are suffering from a shortage of freshwater that is increasing at a frightening rate, most exclusively in growing nations where commercial water shortages prevail. So, in the regions with ample saline water and solar radiation where freshwater is usually limited, the humidification-dehumidification (H-DH) desalination systems have demonstrated inspiring outcomes. The experimental, theoretical, and economical analysis of the bubble column (BC) humidifier, thermoelectric cooler (TEC) based dehumidifier H-DH system has been presented in this work. The effect of various operational parameters on H-DH systems like Ta, Tw, H, do, and ya has been studied. The daily experimental and theoretical productivity obtained during the analysis of the H-DH system was in the span of 7–13 L/day and 9.1–12.4 L/day, respectively, for dissimilar functional variables while the greatest experimental and theoretical productivity was reported 12.97 L/day and 12.4 L/day, respectively, for do = 2 mm, ya = 0.016 kg/s, Tw = 60 °C, Ta = 27 °C, and H = 7 cm. Also, the experimental results present a fine confirmation with the results of the proposed mathematical model. From the economic analysis, it is found that the yearly price per liter and the payback period of the H-DH system are Rs. 5.1/L and 2.4 years, respectively, which is a very promising value.

References

1.
Hafiz
,
A.-u.-R.
, and
Fahad
,
A.-S.
,
2015
, “
Mathematical Modeling of Bubbler Humidifier for Humidification-Dehumidification (HDH) Water Desalination System
,”
Proceedings of the 1st International Conference on Mechanical and Transportation Engineering
,
Kuala Lumpur, Malaysia
,
Apr. 23–25
, http://www.wseas.us/e-library/conferences/2015/Malaysia/MECH/MECH-23.pdf
2.
Jani
,
H. K.
, and
Modi
,
K. V.
,
2018
, “
A Review on Numerous Means of Enhancing Heat Transfer Rate in Solar-Thermal Based Desalination Devices
,”
Renew. Sustain. Energy Rev.
,
93
(
6
), pp.
302
317
.
3.
Jani
,
H. K.
, and
Modi
,
K. V.
,
2017
, “
Techniques of Improving Rate of Heat Transfer in Solar Still as a Solar-Thermal Desalination Device—A Review
,”
Int. J. Adv. Res. Innov. Ideas Educ.
,
3
(
2
), pp.
2395
2396
.
4.
He
,
W.
,
Yang
,
H.
,
Wen
,
T.
, and
Han
,
D.
,
2019
, “
Thermodynamic and Economic Investigation of a Humidification Dehumidification Desalination System Driven by Low Grade Waste Heat
,”
Energy Convers. Manage.
,
183
(
1
), pp.
848
858
.
5.
Zheng
,
H.
,
2017
,
Solar Energy Desalination Technology
,
Elsevier
,
New York
.
6.
Capocelli
,
M.
,
Balsamo
,
M.
,
Lancia
,
A.
, and
Barba
,
D.
,
2018
, “
Process Analysis of a Novel Humidification-Dehumidification-Adsorption (HDHA) Desalination Method
,”
Desalination
,
429
(
10
), pp.
155
166
.
7.
El-Agouz
,
S. A.
,
Sathyamurthy
,
R.
, and
Manokar
,
M.
,
2018
, “
Improvement of Humidification–Dehumidification Desalination Unit Using a Desiccant Wheel
,”
Chem. Eng. Res. Des.
,
131
(
16
), pp.
104
116
.
8.
Kabeel
,
A. E.
,
Hamed
,
M. H.
,
Omara
,
Z. M.
, and
Sharshir
,
S. W.
,
2013
, “
Water Desalination Using a Humidification-Dehumidification Technique—A Detailed Review
,”
Natural Resources
,
4
(
3
).
9.
Jani
,
H. K.
, and
Panchal
,
H.
,
2016
, “
Effective Utilization of Thermo-Electric Generator for Waste Heat Recovery
,”
Int. J. Sci. Res. Dev.
,
4
(
4
), pp.
2321
0613
.
10.
Behnam
,
P.
, and
Shafii
,
M. B.
,
2016
, “
Examination of a Solar Desalination System Equipped With an Air Bubble Column Humidifier, Evacuated Tube Collectors and Thermosyphon Heat Pipes
,”
Desalination
,
397
(
16
), pp.
30
37
.
11.
Ghazal
,
M. T.
,
Atikol
,
U.
, and
Egelioglu
,
F.
,
2014
, “
An Experimental Study of a Solar Humidifier for HDD Systems
,”
Energy Convers. Manage.
,
82
(
5
), pp.
250
258
.
12.
El-Agouz
,
S. A.
,
2010
, “
Desalination Based on Humidification–Dehumidification by Air Bubbles Passing Through Brackish Water
,”
Chem. Eng.
,
165
(
2
), pp.
413
419
.
13.
Narayan
,
G. P.
, and
Lienhard
,
J. H.
,
2012
, “
Thermal Design of Humidification–Dehumidification Systems for Affordable Small-Scale Desalination
,”
IDA J. Desalin. Water Reuse
,
4
(
3
), pp.
24
34
.
14.
Narayan
,
G. P.
,
Sharqawy
,
M. H.
,
Lam
,
S.
,
Das
,
S. K.
, and
Lienhard
,
J. H.
,
2013
, “
Bubble Columns for Condensation at High Concentrations of Noncondensable gas: Heat-Transfer Model and Experiments
,”
AIChE J.
,
59
(
5
), pp.
1780
1790
.
15.
Liu
,
H.
, and
Sharqawy
,
M. H.
,
2016
, “
Experimental Performance of Bubble Column Humidifier and Dehumidifier Under Varying Pressure
,”
Int. J. Heat Mass Trans.
,
93
(
7
), pp.
934
944
.
16.
Rajaseenivasan
,
T.
,
Shanmugam
,
R. K.
,
Hareesh
,
V. M.
, and
Srithar
,
K.
,
2016
, “
Combined Probation of Bubble Column Humidification Dehumidification Desalination System Using Solar Collectors
,”
Energy
,
116
(
3
), pp.
459
469
.
17.
Rajaseenivasan
,
T.
, and
Srithar
,
K.
,
2017
, “
An Investigation Into a Laboratory Scale Bubble Column Humidification Dehumidification Desalination System Powered by Biomass Energy
,”
Energy Convers. Manage.
,
139
(
4
), pp.
232
244
.
18.
Xiong
,
R.
,
Wang
,
S.
, and
Wang
,
Z.
,
2006
, “
A Mathematical Model for a Thermally Coupled Humidification–Dehumidification Desalination Process
,”
Desalination
,
196
(
1–3
), pp.
177
187
.
19.
Yamalı
,
C.
, and
Solmuş
,
İ
,
2007
, “
Theoretical Investigation of a Humidification-Dehumidification Desalination System Configured by a Double-Pass Flat Plate Solar Air Heater
,”
Desalination
,
205
(
1–3
), pp.
163
177
.
20.
Kabeel
,
A. E.
, and
El-Said
,
E. M. S.
,
2014
, “
A Hybrid Solar Desalination System of Air Humidification, Dehumidification and Water Flashing Evaporation: Part II,” Experimental Investigation
,”
Desalination
,
341
(
10
), pp.
50
60
.
21.
Garg
,
H. P.
,
Adhikari
,
R. S.
, and
Kumar
,
R.
,
2003
, “
Experimental Design and Computer Simulation of Multi-Effect Humidification (MEH)-Dehumidification Solar Distillation
,”
Desalination
,
153
(
1–3
), pp.
81
86
.
22.
Yamalı
,
C.
, and
Solmus
,
İ
,
2008
, “
A Solar Desalination System Using Humidification–Dehumidification Process: Experimental Study and Comparison With the Theoretical Results
,”
Desalination
,
220
(
1–3
), pp.
538
551
.
23.
Zhani
,
K.
, and
Bacha
,
H. B.
,
2010
, “
Experimental Investigation of a New Solar Desalination Prototype Using the Humidification Dehumidification Principle
,”
Renew. Energy
,
35
(
11
), pp.
2610
2617
.
24.
Patel
,
V.
,
Patel
,
R.
, and
Patel
,
J.
,
2019
, “
Experimental and Theoretical Evaluation of Bubbler Humidifier for Humidification-Dehumidification Water Desalination System
,”
Heat Mass Transfer
,
55
(
11
), pp.
3201
3210
.
25.
Riffat
,
S. B.
, and
Ma
,
X.
,
2003
, “
Thermoelectrics: A Review of Present and Potential Applications
,”
Appl. Therm. Eng.
,
23
(
8
), pp.
913
935
.
26.
Vián
,
J. G.
,
Astrain
,
D.
, and
Domınguez
,
M.
,
2002
, “
Numerical Modelling and a Design of a Thermoelectric Dehumidifier
,”
Appl. Therm. Eng.
,
22
(
4
), pp.
407
422
.
27.
Milani
,
D.
,
Abbas
,
A.
,
Vassallo
,
A.
,
Chiesa
,
M.
, and
Al Bakri
,
D.
,
2011
, “
Evaluation of Using Thermoelectric Coolers in a Dehumidification System to Generate Freshwater From Ambient Air
,”
Chem. Eng. Sci.
,
66
(
12
), pp.
2491
2501
.
28.
Rahbar
,
N.
, and
Esfahani
,
J. A.
,
2012
, “
Experimental Study of a Novel Portable Solar Still by Utilizing the Heatpipe and Thermoelectric Module
,”
Desalination
,
284
(
9
), pp.
55
61
.
29.
Yildırım
,
C.
,
Soylu
,
S. K.
,
Atmaca
,
İ
, and
Solmuş
,
İ
,
2014
, “
Experimental Investigation of a Portable Desalination Unit Configured by a Thermoelectric Cooler
,”
Energy Convers. Manage.
,
85
(
2
), pp.
140
145
.
30.
Dehghan
,
A. A.
,
Afshari
,
A.
, and
Rahbar
,
N.
,
2015
, “
Thermal Modeling and Exergetic Analysis of a Thermoelectric Assisted Solar Still
,”
Sol. Energy
,
115
(
7
), pp.
277
288
.
31.
Srithar
,
K.
, and
Rajaseenivasan
,
T.
,
2017
, “
Performance Analysis on a Solar Bubble Column Humidification Dehumidification Desalination System
,”
Process Saf. Environ. Prot.
,
105
(
9
), pp.
41
50
.
32.
Tiwari
,
G. N.
,
1984
, “
Economic Analysis of Some Solar Energy Systems
,”
Energy Convers. Manage.
,
24
(
2
), pp.
131
135
.
You do not currently have access to this content.