Abstract

This paper analyses the condensation heat transfer phenomena in minichannel using acetone, ammonia, propylene, and R134a as the working fluids used in new-age space applications. A novel numerical model is developed considering the changes in local vapor pressure in the channel established due to shrinking in the flow passage by the gradual formation of the liquid layer. The present developed numerical model is compared with the available numerical and experimental results. The impacts of different inlet mass fluxes (250, 500, and 750 kg/m2 s), channel heights (1, 4, 6, and 8 mm), applied heat loads (10, 100, 250, and 500 W), and channel orientations (0 deg, 30 deg, 45 deg, 60 deg, and 90 deg) on the performance of the condensation heat transfer process are investigated. The formation of the thin liquid film layers and evaluation of the liquid–vapor interface profiles are examined. The study reveals that the channel orientation has a marginal influence on the flow pattern for the considered channel length of 20 mm. The maximum change in pressure loss is found at the channel orientation of 45 deg, and the average heat transfer coefficient is almost the same for all the considered orientations. The flow pattern is affected by the increase in mass flux resulting in the delay of heat transfer coefficient fluctuations. The average heat transfer coefficient decreases with increasing heat load, and the minimum average heat transfer coefficient is obtained for heat load, Q = 500 W.

References

1.
Chen
,
Y.
,
Shi
,
M.
,
Cheng
,
P.
, and
Peterson
,
G.
,
2008
, “
Condensation in Microchannels
,”
Nanoscale Microscale Thermophys. Eng.
,
12
(
2
), pp.
117
143
.
2.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.
3.
Chamund
,
D. J.
,
Coulbeck
,
L.
,
Newcombe
,
D. R.
, and
Waind
,
P. R.
,
2009
, “
High Power Density IGBT Module for High Reliability Applications
,”
6th IEEE International Power Electronics and Motion Control Conference
,
Wuhan, China
,
May 17–20
, pp.
274
280
.
4.
Cavallini
,
A.
,
Doretti
,
L.
,
Matkovic
,
M.
, and
Rossetto
,
L.
,
2006
, “
Update on Condensation Heat Transfer and Pressure Drop in Minichannels
,”
Heat Transfer Eng.
,
27
(
4
), pp.
74
87
.
5.
Meyer
,
J. P.
,
Dirker
,
J.
, and
Adelaja
,
A. O.
,
2014
, “
Condensation Heat Transfer in Smooth Inclined Tubes for R134a at Different Saturation Temperatures
,”
Int. J. Heat Mass Transfer
,
70
, pp.
515
525
.
6.
Bortolin
,
S.
,
Da Riva
,
E.
, and
Del Col
,
D.
,
2014
, “
Condensation in a Square Minichannel: Application of the VoF Method
,”
Heat Transfer Eng.
,
35
(
2
), pp.
193
203
.
7.
Wang
,
B. X.
, and
Du
,
X. Z.
,
2000
, “
Study on Laminar Film-Wise Condensation for Vapor Flow in an Inclined Small/Mini-Diameter Tube
,”
Int. J. Heat Mass Transfer
,
43
(
10
), pp.
1859
1868
.
8.
Da Riva
,
E.
, and
Del Col
,
D.
,
2012
, “
Numerical Simulation of Laminar Liquid Film Condensation in a Horizontal Circular Minichannel
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
5
), p.
051019
.
9.
Cavallini
,
A.
,
Censi
,
G.
,
Del Col
,
D.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
L.
,
2001
, “
Experimental Investigation on Condensation Heat Transfer and Pressure Drop of New HFC Refrigerants (R134a, R125, R32, R410A, R236ea) in a Horizontal Smooth Tube
,”
Int. J. Refrig.
,
24
(
1
), pp.
73
87
.
10.
Jung
,
D.
,
Song
,
K.-H.
,
Cho
,
Y.
, and
Kim
,
S.-J.
,
2003
, “
Flow Condensation Heat Transfer Coefficients of Pure Refrigerants
,”
Int. J. Refrig.
,
26
(
1
), pp.
4
11
.
11.
Matkovic
,
M.
,
Cavallini
,
A.
,
Del Col
,
D.
, and
Rossetto
,
L.
,
2009
, “
Experimental Study on Condensation Heat Transfer Inside a Single Circular Minichannel
,”
Int. J. Heat Mass Transfer
,
52
(
9–10
), pp.
2311
2323
.
12.
Bandhauer
,
T. M.
,
Agarwal
,
A.
, and
Garimella
,
S.
,
2006
, “
Measurement and Modeling of Condensation Heat Transfer Coefficients in Circular Microchannels
,”
ASME J. Heat Transfer-Trans. ASME
,
128
(
10
), pp.
1050
1059
.
13.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
,
2001
, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
4
), pp.
293
311
.
14.
Nebuloni
,
S.
, and
Thome
,
J. R.
,
2010
, “
Numerical Modeling of Laminar Annular Film Condensation for Different Channel Shapes
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2615
2627
.
15.
Ding
,
Y.
, and
Jia
,
L.
, “
Study on Flow Condensation Characteristics of Refrigerant R410a in a Single Rectangular Micro-Channel
,”
Int. J. Heat Mass Transfer
,
114
, pp.
125
134
.
16.
Lyulin
,
Y.
,
Marchuk
,
I.
,
Chikov
,
S.
, and
Kabov
,
O.
,
2011
, “
Experimental Study of Laminar Convective Condensation of Vapour Inside an Inclined Circular Tube
,”
Microgravity Sci. Technol.
,
23
(
4
), pp.
439
445
.
17.
Yan
,
Y.
, and
Lin
,
T. F.
,
1999
, “
Condensation Heat Transfer and Pressure Drop of Refrigerant R1023a in a Small Pipe
,”
Int. J. Heat Mass Transfer
,
42
(
4
), pp.
697
708
.
18.
Lips
,
S.
, and
Meyer
,
J. P.
,
2012
, “
Experimental Study of Convective Condensation in an Inclined Smooth Tube. Part 1: Inclination Effect on Flow Pattern and Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
395
404
.
19.
Park
,
K. J.
,
Jung
,
D.
, and
Seo
,
T.
,
2008
, “
Flow Condensation Heat Transfer Characteristics of Hydrocarbon Refrigerants and Dimethyl Ether Inside a Horizontal Plain Tube
,”
Int. J. Multiphase Flow
,
34
(
7
), pp.
628
635
.
20.
Del Col
,
D.
,
Azzolin
,
M.
,
Bortolin
,
S.
, and
Berto
,
A.
,
2017
, “
Experimental Results and Design Procedures for Minichannel Condensers and Evaporators Using Propylene
,”
Int. J. Refrig.
,
83
, pp.
23
38
.
21.
Cavallini
,
A.
,
Censi
,
G.
,
Del Col
,
D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
,
Zilio
,
C.
, and
Censi
,
G.
,
2006
, “
Condensation in Horizontal Smooth Tubes: A New Heat Transfer Model for Heat Exchanger Design
,”
Heat Transfer Eng.
,
27
(
8
), pp.
31
38
.
22.
Lee
,
H.
,
Kharangate
,
C. R.
,
Mascarenhas
,
N.
,
Park
,
I.
, and
Mudawar
,
I.
,
2015
, “
Experimental and Computational Investigation of Vertical Downflow Condensation
,”
Int. J. Heat Mass Transfer
,
85
, pp.
865
879
.
23.
Ganapathy
,
H.
,
Al-Hajri
,
E.
, and
Ohadi
,
M. M.
,
2013
, “
Phase Field Modeling of Taylor Flow in Mini/Micro Channels, Part I: Bubble Formation Mechanisms and Phase Field Parameters
,”
Chem. Eng. Sci.
,
94
, pp.
138
149
.
24.
O’Neill
,
L. E.
,
Balasubramaniam
,
R.
,
Nahra
,
H. K.
,
Hasan
,
M. M.
, and
Mudawar
,
I.
,
2019
, “
Flow Condensation Heat Transfer in a Smooth Tube at Different Orientations: Experimental Results and Predictive Models
,”
Int. J. Heat Mass Transfer
,
140
, pp.
533
563
.
25.
Ganapathy
,
H.
,
Shooshtari
,
A.
,
Choo
,
K.
,
Dessiatoun
,
S.
,
Alshehhi
,
M.
, and
Ohadi
,
M.
,
2013
, “
Volume of Fluid-Based Numerical Modeling of Condensation Heat Transfer and Fluid Flow Characteristics in Microchannels
,”
Int. J. Heat Mass Transfer
,
65
, pp.
62
72
.
26.
Greenshields
,
C. J.
,
2017
, “OpenFOAM User Guide,” OpenFOAM Foundation Ltd, Version 8, https://cfd.direct/openfoam/user-guide/, Last Accessed August 11, 2020.
27.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1,” Natl Std. Ref. Data Series (NIST NSRDS), National Institute of Standards and Technology, Gaithersburg.
28.
Rusche
,
H.
,
2002
, “
Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions
,” Ph.D. Thesis, University of London.
29.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
30.
Lee
,
J.
,
O’Neill
,
L. E.
, and
Mudawar
,
I.
,
2020
, “
3-D Computational Investigation and Experimental Validation of Effect of Shear-Lift on Two-Phase Flow and Heat Transfer Characteristics of Highly Subcooled Flow Boiling in Vertical Upflow
,”
Int. J. Heat Mass Transfer
,
150
, p.
119291
.
31.
Dong
,
Z.
,
Xu
,
J.
,
Jiang
,
F.
, and
Liu
,
P.
,
2012
, “
Numerical Study of Vapor Bubble Effect on Flow and Heat Transfer in Microchannel
,”
Int. J. Therm. Sci.
,
54
, pp.
22
32
.
32.
Pramanick
,
S.
,
Dey
,
P.
, and
Saha
,
S. K.
,
2022
, “
Development of Numerical Model to Study the Effect of Condensate Liquid Layer on Condensation Heat Transfer of R134a in Minichannel
,”
Heat Mass Transfer.
33.
ASHRAE,
2009
, ASHRAE Handbook–Fundamentals SI ed, https://www.ashrae.org/technical-resources/ashraehandbook
34.
Caboussat
,
A.
,
Clausen
,
P.
, and
Rappazd
,
J.
,
2012
, “
Numerical Simulation of Two-Phase Flow With Interface Tracking by Adaptive Eulerian Grid Subdivision
,”
Math. Comput. Modell.
,
55
(
3–4
), pp.
490
504
.
35.
Wang
,
H. S.
, and
Rose
,
J. W.
,
2006
, “
Film Condensation in Horizontal Microchannels: Effect of Channel Shape
,”
Int. J. Therm. Sci.
,
45
(
12
), pp.
1205
1212
.
36.
Ewim
,
D. R. E.
,
Meyer
,
J. P.
, and
Noori Rahim Abadi
,
S. M. A.
,
2018
, “
Condensation Heat Transfer Coefficients in an Inclined Smooth Tube at Low Mass Fluxes
,”
Int. J. Heat Mass Transfer
,
123
, pp.
455
467
.
37.
Fronk
,
B. M.
, and
Garimella
,
S.
,
2016
, “
Condensation of Ammonia and High-Temperature-Glide Ammonia/Water Zeotropic Mixtures in Minichannels—Part I: Measurements
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1343
1356
.
38.
Mohammed
,
H. I.
,
Giddings
,
D.
, and
Walker
,
G. S.
,
2019
, “
CFD Multiphase Modelling of the Acetone Condensation and Evaporation Process in a Horizontal Circular Tube
,”
Int. J. Heat Mass Transfer
,
134
, pp.
1159
1170
.
39.
Li
,
S.
,
Zhao
,
Z.
,
Zhang
,
Y.
,
Xu
,
H.
, and
Zeng
,
W.
,
2020
, “
Experimental and Numerical Analysis of Condensation Heat Transfer and Pressure Drop of Refrigerant R22 in Minichannels of a Printed Circuit Heat Exchanger
,”
Energies
,
13
(
24
), p.
6589
.
40.
Basaran
,
A.
,
Benim
,
A. C.
, and
Yurddas
,
A.
,
2021
, “
Numerical Simulation of the Condensation Flow of the Isobutane (R600a) Inside Microchannel
,”
Heat Transfer Eng.
,
43
(
3–5
), pp.
337
361
.
41.
Wang
,
Y.
,
Sefiane
,
K.
,
Wang
,
Z.
, and
Harmand
,
S.
,
2014
, “
Analysis of Two-Phase Pressure Drop Fluctuations During Micro-Channel Flow Boiling
,”
Int. J. Heat Mass Transfer
,
70
, pp.
353
362
.
42.
Da Riva
,
E.
, and
Del Col
,
D.
,
2011
, “
Effect of Gravity During Condensation of R134a in a Circular Minichannel
,”
Microgravity Sci. Technol.
,
23
, pp.
87
97
.
You do not currently have access to this content.