Abstract

Radio frequency (RF) electronics are developing toward high power, high integration, and high-power density, resulting in a continuous increase in heat flux. The traditional high-power RF package, which is usually composed of aluminum nitride (AlN) substrate, aluminum silicon housing shell, and aluminum alloy cold plate, exhibits poor heat dissipation ability and high thickness due to excessive interfaces and a long thermal conduction path. In this paper, aimed at improving heat dissipation ability and reducing the thickness of RF electronics, the microchannel was transferred from the cold plate to the AlN high-temperature co-fired ceramic (HTCC) substrate which plays the role of electrical connection, structural support, and liquid cooling cold plate. The embedded AlN microchannel cooler was firstly designed. Then, a prototype of the AlN substrate with 64 simulated chip arrays and microchannels was fabricated and the thermal performance was evaluated using an experimental setup. Finally, the thermal performances of the proposed and traditional cooler were compared using a CFD simulation. The results indicated that the proposed embedded cooling structure could enhance the heat-flux dissipation ability by 61% and reduce the packaging thickness by 40% compared with the traditional cooling structure.

References

1.
Bar-Cohen
,
A.
,
Maurer
,
J. J.
, and
Sivananthan
,
A.
,
2015
, “
Near-Junction Microfluidic Thermal Management of RF Power Amplifiers
,”
Proceedings of the 2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS)
,
Tel Aviv, Israel
,
Nov. 2–4
, IEEE, pp.
1
8
.
2.
Samanta
,
K. K.
,
2016
, “
PA Thermal Management and Packaging: Wideband PA and Packaging, History, and Recent Advances: Part 2
,”
IEEE Microw. Mag.
,
17
(
11
), pp.
73
81
.
3.
Wei
,
T.
,
Huang
,
H. J.
,
Ma
,
Y. P.
, and
Qian
,
J. Y.
,
2021
, “
Design and Fabrication of Multi-layer Silicone Microchannel Cooler for High-Power Chip Array
,”
Proceedings of the 22nd International Conference on Electronic Packaging Technology (ICEPT)
,
Xiamen, China
,
Sept. 14–17
, IEEE, pp.
1
5
.
4.
Nanver
,
L. K.
,
Schellevis
,
H.
,
Scholtes
,
T. L. M.
,
Spina
,
L. L.
,
Lorito
,
G.
,
Sarubbi
,
F.
,
Gonda
,
V.
, and
Popadic
,
M.
,
2009
, “
Improved RF Devices for Future Adaptive Wireless Systems Using Two-Sided Contacting and AlN Cooling
,”
IEEE J. Solid-State Circuits
,
44
(
9
), pp.
2322
2338
.
5.
Shigeno
,
K.
,
Li
,
M.
, and
Fujimori
,
H.
,
2021
, “
Development of Novel Temperature-Stable Al2O3–TiO2-Based Dielectric Ceramics Featuring Superior Thermal Conductivity for LTCC Applications
,”
J. Eur. Ceram. Soc.
,
41
(
1
), pp.
376
386
.
6.
Xia
,
G.
,
He
,
L.
, and
Yang
,
D.
,
2012
, “
Preparation and Characterization of CaO–Al2O3–SiO2 Glass/Fused Silica Composites for LTCC Application
,”
J. Alloys Compd.
,
531
, pp.
70
76
.
7.
Sturdivant
,
R.
,
2010
, “
Fundamentals of Packaging at Microwave and Millimeter-Wave Frequencies
,”
Proceedings of the RF and Microwave Microelectronics Packaging
,
Boston, MA
,
Oct. 30
, Springer, pp.
1
23
.
8.
Kuang
,
K.
,
Kim
,
F.
, and
Cahill
,
S. S.
,
2010
,
RF and Microwave Microelectronics Packaging
,
Springer
,
New York
.
9.
Belmonte
,
M.
,
Lopez-Navarrete
,
G.
,
Osendi
,
M. I.
, and
Miranzo
,
P.
,
2021
, “
Heat Dissipation in 3D Printed Cellular Aluminum Nitride Structures
,”
J. Eur. Ceram. Soc.
,
41
(
4
), pp.
2407
2414
.
10.
Bar-Cohen
,
A.
,
Maurer
,
J. J.
, and
Altman
,
D. H.
,
2019
, “
Embedded Cooling for Wide Bandgap Power Amplifiers: A Review
,”
ASME J. Electron. Packag.
,
141
(
4
), p.
040803
.
11.
Qian
,
J. Y.
, and
Wei
,
T.
,
2015
, “
Thermal Resistance Analysis and Optimization Criteria for Cold Plate Expansion of Solid State T/R Modules
,”
Modern Radar
,
37
(
10
), pp.
77
81
.
12.
Wei
,
T.
,
Peng
,
J.
,
Qian
,
J. Y.
,
Zhang
,
Y.
, and
Zhang
,
Z. G.
,
2021
, “
An Integrated Cooling Device for Power Device Array Arrangement
,” China Patent CN212810279U.
13.
Yin
,
S.
,
Tseng
,
K. J.
, and
Zhao
,
J.
,
2013
, “
Design of AlN-Based Micro-channel Heat Sink in Direct Bond Copper for Power Electronics Packaging
,”
Appl. Therm. Eng.
,
52
(
1
), pp.
120
129
.
14.
Hahn
,
R.
,
Glaw
,
V.
,
Ginolas
,
A.
,
Töpfer
,
M.
,
Wittke
,
K.
, and
Reichl
,
H.
,
1999
, “
High Performance Liquid Cooled Aluminium Nitride Heat Sinks
,”
Microelectron. Int.
,
16
(
1
), pp.
21
26
.
15.
Fattahi
,
M.
,
Vaferi
,
K.
,
Vajdi
,
M.
,
Moghanlou
,
F. S.
,
Namini
,
A. S.
, and
Asl
,
M. S.
,
2020
, “
Aluminum Nitride As an Alternative Ceramic for Fabrication of Microchannel Heat Exchangers: A Numerical Study
,”
Ceram. Int.
,
46
(
8
), pp.
11647
11657
.
16.
Sarowar
,
M. T.
,
2021
, “
Numerical Analysis of a Liquid Metal Cooled Mini Channel Heat Sink With Five Different Ceramic Substrates
,”
Ceram. Int.
,
47
(
1
), pp.
214
225
.
17.
Jankowski
,
N. R.
,
Everhart
,
L.
,
Geil
,
B. R.
, and
Tipton
,
W. C.
,
2008
, “
Stereolithographically Fabricated Aluminum Nitride Microchannel Substrates for Integrated Power Electronics Cooling
,”
Proceedings of the 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
,
Orlando, FL
,
May 28–31
, IEEE, pp.
180
188
.
18.
Zhang
,
X.
,
Chen
,
N.
,
Wu
,
J.
,
Wei
,
J.
,
Yan
,
B.
,
Li
,
L.
, and
He
,
N.
,
2021
, “
Rapid Fabrication of Surface Microstructures on AlN HTCC Substrate by Chemically Assisted Laser Ablation
,”
Ceram. Int.
,
47
(
19
), pp.
27598
27608
.
19.
Van Erp
,
R.
,
Soleimanzadeh
,
R.
,
Nela
,
L.
,
Kampitsis
,
G.
, and
Matioli
,
E.
,
2020
, “
Co-designing Electronics With Microfluidics for More Sustainable Cooling
,”
Nature
,
585
(
7824
), pp.
211
216
.
20.
Zhou
,
F.
,
Joshi
,
S. N.
,
Liu
,
Y. H.
, and
Dede
,
E. M.
,
2019
, “
Near-Junction Cooling for Next-Generation Power Electronics
,”
Int. Commun. Heat Mass Transfer
,
108
, p.
104300
.
21.
Yang
,
M.
,
Li
,
M. T.
,
Hua
,
Y. C.
,
Wang
,
W.
, and
Cao
,
B. Y.
,
2020
, “
Experimental Study on Single-Phase Hybrid Microchannel Cooling Using HFE-7100 for Liquid-Cooled Chips
,”
Int. J. Heat Mass Transfer
,
160
, p.
120230
.
22.
Drummond
,
K. P.
,
Back
,
D.
,
Sinanis
,
M. D.
,
Janes
,
D. B.
,
Peroulis
,
D.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
A Hierarchical Manifold Microchannel Heat Sink Array for High-Heat-Flux Two-Phase Cooling of Electronics
,”
Int. J. Heat Mass Transfer
,
117
, pp.
319
330
.
23.
Drummond
,
K. P.
,
Back
,
D.
,
Sinanis
,
M. D.
,
Janes
,
D. B.
,
Peroulis
,
D.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
Characterization of Hierarchical Manifold Microchannel Heat Sink Arrays Under Simultaneous Background and Hotspot Heating Conditions
,”
Int. J. Heat Mass Transfer
,
126
(
Part A
), pp.
1289
1301
.
24.
Lee
,
H.
,
Agonafer
,
D. D.
,
Won
,
Y.
,
Houshmand
,
F.
,
Gorle
,
C.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2016
, “
Thermal Modeling of Extreme Heat Flux Microchannel Coolers for Gan-on-Sic Semiconductor Devices
,”
ASME J. Electron. Packag.
,
138
(
1
), p.
010907
.
25.
Dowling
,
K. M.
,
Suria
,
A. J.
,
Won
,
Y.
,
Shankar
,
A.
,
Lee
,
H.
,
Asheghi
,
M.
,
Goodson
,
K. E.
, and
Senesky
,
D. G.
,
2015
, “
Inductive Coupled Plasma Etching of High Aspect Ratio Silicon Carbide Microchannels for Localized Cooling
,”
Proceedings of the International Electronic Packaging Technical Conference and Exhibition
, Vol.
56901
,
American Society of Mechanical Engineers
, Paper No.
V003T07A006
.
26.
Yang
,
Q.
,
Zhao
,
J.
,
Huang
,
Y.
,
Zhu
,
X.
,
Fu
,
W.
,
Li
,
C.
, and
Miao
,
J.
,
2019
, “
A Diamond Made Microchannel Heat Sink for High-Density Heat Flux Dissipation
,”
Appl. Therm. Eng.
,
158
, p.
113804
.
27.
Fu
,
J.
,
Wang
,
Y.
, and
Wang
,
J.
,
2019
, “
Fabrication of Hundreds of Microns Three-Dimensional Single Crystal Diamond Channel Along With High Aspect Ratio by Two-Step Process
,”
Mater. Lett.
,
255
, p.
126556
.
You do not currently have access to this content.