Abstract

With the application of various high-power electronic devices to improving aircraft comprehensive performance, there has been a significant interest in the use of high heat flux dissipation technology to maintain an effective and safe operation for electronic devices. This article presents a numerical study on the thermal and electrical performance of the avionics server module by using single-phase immersion cooling technology with flow distributor and investigates the influence of heat dissipation capacity on the thermal performance of the avionics server module and DC IR-drop of printed circuit board power distribution network (PDN). The simulation results showed that a higher dielectric fluid flowrate can be provided b flow distributor with the same pumping power, and the maximum temperature of the hot spot was 4–8 °C lower than the module without a flow distributor. The result confirmed the improved flow performance and enhances heat transfer of the hot spot for the module with a flow distributor. However, the module without the flow distributor showed better comprehensive cooling performance with about 10–15% reduction in average Nusselt number with an increase in Re. The discrepancy of PDN DC IR-drop under different Re values was constant at 3% for different design geometries, which means the effect of the flow distributor on power delivery capability can be neglected.

References

1.
Cai
,
S. Q.
,
Bhunia
,
A.
, and
Asfia
,
J. F.
,
2017
, “
A Passive and Remote Heat Transfer Solution for Avionics Thermal Management
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
2
), p.
021009
.
2.
Zhao
,
M.
,
Pang
,
L.
,
Liu
,
M.
,
Yu
,
S.
, and
Mao
,
X.
,
2020
, “
Control Strategy for Helicopter Thermal Management System Based on Liquid Cooling and Vapor Compression Refrigeration
,”
Energies
,
13
(
9
), p.
2177
.
3.
Wang
,
J.-X.
,
Guo
,
W.
,
Xiong
,
K.
, and
Wang
,
S.-N.
,
2020
, “
Review of Aerospace-Oriented Spray Cooling Technology
,”
Prog. Aerosp. Sci.
,
116
, p.
100635
.
4.
Schmidt
,
D. K.
,
Stevens
,
J.
, and
Roney
,
J.
,
2007
, “
Near-Space Station-Keeping Performance of a Large High-Altitude Notional Airship
,”
J. Aircr.
,
44
(
2
), pp.
611
615
.
5.
Emo
,
S.
,
Ervin
,
J.
,
Michalak
,
T. E.
, and
Tsao
,
V.
,
2014
, “
Cycle-Based Vapor Cycle System Control and Active Charge Management for Dynamic Airborne Applications
,”
SAE 2014 Aerospace Systems and Technology Conference
,
Cincinnati, OH
,
Sept. 23–25
, Paper No. 2014-01-2224.
6.
Suresh
,
A.
,
2022
, “
Thermal Sort: A Simple Optimization Problem in Avionics Cooling
,”
AIAA SCITECH 2022 Forum
,
San Diego, CA
,
Jan. 3–7
, Paper No. 2022-1912.
7.
Zhang
,
H.
,
Li
,
Y.
,
Wang
,
S.
,
Liu
,
Y.
, and
Zhong
,
M.
,
2016
, “
Ground Experimental Investigations Into an Ejected Spray Cooling System for Space Closed-Loop Application
,”
Chin. J. Aeronaut.
,
29
(
3
), pp.
630
638
.
8.
Shanmugasundaram
,
V.
,
Ramalingam
,
M.
,
Donovan
,
B.
,
Mahefkey
,
T.
, and
Hager
,
B.
,
2005
, “
Analytical Investigation of Thermal Management Options for an Aircraft Based High Pulsed Power System Application
,”
3rd International Energy Conversion Engineering Conference
,
San Francisco, CA
,
Aug. 15–18
, AIAA, Paper No. 2005-5649.
9.
Smakulski
,
P.
, and
Pietrowicz
,
S.
,
2016
, “
A Review of the Capabilities of High Heat Flux Removal by Porous Materials, Microchannels and Spray Cooling Techniques
,”
Appl. Therm. Eng.
,
104
(
5
), pp.
636
646
.
10.
Salah
,
W. A.
, and
Abuhelwa
,
M.
,
2020
, “
Review of Thermoelectric Cooling Devices Recent Applications
,”
J. Eng. Sci. Technol.
,
15
(
1
), pp.
455
476
.
11.
Cheng
,
J.
,
Shuai
,
S.
,
Zhao
,
R.
, and
Tang
,
Z.
,
2022
, “
Numerical Analysis of Heat-Pipe-Based Battery Thermal Management System for Prismatic Lithium-Ion Batteries
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
8
), p.
081008
.
12.
Bulut
,
M.
,
Kandlikar
,
S. G.
, and
Sozbir
,
N.
,
2019
, “
A Review of Vapor Chambers
,”
Heat Transfer Eng.
,
40
(
19
), pp.
1551
1573
.
13.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.
14.
Hotta
,
T.
, and
Patil
,
N.
,
2018
, “
A Review on Cooling of Discrete Heated Modules Using Liquid Jet Impingement
,”
Front. Heat Mass Transfer
,
11
(
16
), pp.
1
13
.
15.
Roe
,
C.
,
Feng
,
X.
,
White
,
G.
,
Li
,
R.
,
Wang
,
H.
,
Rui
,
X.
,
Li
,
C.
,
Zhang
,
F.
,
Null
,
V.
, and
Parkes
,
M.
,
2022
, “
Immersion Cooling for Lithium-Ion Batteries—A Review
,”
J. Power Sources
,
525
(
30
), p.
231094
.
16.
Liang
,
K.
,
Li
,
Z.
,
Chen
,
M.
, and
Jiang
,
H.
,
2019
, “
Comparisons Between Heat Pipe, Thermoelectric System, and Vapour Compression Refrigeration System for Electronics Cooling
,”
Appl. Therm. Eng.
,
146
(
5
), pp.
260
267
.
17.
Siddique
,
A. R. M.
,
Mahmud
,
S.
, and
Van Heyst
,
B.
,
2018
, “
A Comprehensive Review on a Passive (Phase Change Materials) and an Active (Thermoelectric Cooler) Battery Thermal Management System and Their Limitations
,”
J. Power Sources
,
401
(
15
), pp.
224
237
.
18.
Kuncoro
,
I.
,
Pambudi
,
N.
,
Biddinika
,
M.
,
Widiastuti
,
I.
,
Hijriawan
,
M.
, and
Wibowo
,
K.
,
2019
, “
Immersion Cooling as the Next Technology for Data Center Cooling: A Review
,”
J. Phys. Conf. Ser.
,
1402
(
4
), p.
044057
.
19.
Levin
,
I.
,
Dordopulo
,
A.
,
Doronchenko
,
Y.
,
Raskladkin
,
M.
,
Fedorov
,
A.
, and
Kalyaev
,
Z.
,
2016
, “
Immersion Liquid Cooling FPGA-Based Reconfigurable Computer System
,”
IFAC-PapersOnLine
,
49
(
25
), pp.
366
371
.
20.
Pérez
,
S.
,
Arroba
,
P.
, and
Moya
,
J. M.
,
2021
, “
Energy-Conscious Optimization of Edge Computing Through Deep Reinforcement Learning and Two-Phase Immersion Cooling
,”
Future Gener. Comput. Syst.
,
125
, pp.
891
907
.
21.
Patil
,
M. S.
,
Seo
,
J.-H.
, and
Lee
,
M.-Y.
,
2021
, “
A Novel Dielectric Fluid Immersion Cooling Technology for Li-Ion Battery Thermal Management
,”
Energy Convers. Manage.
,
229
(
1
), p.
113715
.
22.
Sivakumar
,
B.
,
Navakrishnan
,
S.
,
Cibi
,
M. R.
, and
Senthil
,
R.
,
2021
, “
Experimental Study on the Electrical Performance of a Solar Photovoltaic Panel by Water Immersion
,”
Environ. Sci. Pollut. Res.
,
28
(
31
), pp.
42981
42989
.
23.
Cengiz
,
C.
,
Muslu
,
A. M.
,
Arik
,
M.
, and
Dogruoz
,
B.
,
2020
, “
Enhanced Thermal Performance of High Flux Led Systems With Two-Phase Immersion Cooling
,”
19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
,
Orlando, FL
,
July 21–23
,
IEEE
, pp.
196
206
, Paper No. 19995251.
24.
Lionello
,
M.
,
Rampazzo
,
M.
,
Beghi
,
A.
,
Varagnolo
,
D.
, and
Vesterlund
,
M.
,
2020
, “
Graph-Based Modelling and Simulation of Liquid Immersion Cooling Systems
,”
Energy
,
207
(
15
), p.
118238
.
25.
Cheng
,
C.-C.
,
Chang
,
P.-C.
,
Li
,
H.-C.
, and
Hsu
,
F.-I.
,
2020
, “
Design of a Single-Phase Immersion Cooling System Through Experimental and Numerical Analysis
,”
Int. J. Heat Mass Transfer
,
160
, p.
120203
.
26.
Ali
,
A.
,
2020
, “
Thermal Performance and Stress Analysis of Heat Spreaders for Immersion Cooling Applications
,”
Appl. Therm. Eng.
,
181
(
25
), p.
115984
.
27.
Fan
,
S.
, and
Duan
,
F.
,
2021
, “
Correlations for Heat Transfer Characteristics of the Onset of Nucleate Boiling in Submerged Jet Impingement
,”
Int. J. Therm. Sci.
,
170
, p.
107071
.
28.
Ren
,
L.
,
Wang
,
Y.
,
Yang
,
Z.
, and
Ding
,
W.
,
2021
, “
High Power and High Repetition Frequency Sub-Nanosecond Pulse Generator With Two-Phase Immersion Cooling Technique
,”
Rev. Sci. Instrum.
,
92
(
3
), p.
034716
.
29.
Jithin
,
K. V.
, and
Rajesh
,
P. K.
,
2022
, “
Numerical Analysis of Single-Phase Liquid Immersion Cooling for Lithium-Ion Battery Thermal Management Using Different Dielectric Fluids
,”
Int. J. Heat Mass Transfer
,
188
, p.
122608
.
30.
Kang
,
D.
,
Lee
,
J.
,
Chakraborty
,
A.
,
Lee
,
S.-E.
,
Kim
,
G.
, and
Yu
,
C.
,
2022
, “
Recent Advances in Two-Phase Immersion Cooling With Surface Modifications for Thermal Management
,”
Energies
,
15
(
3
), p.
1214
.
31.
Pambudi
,
N. A.
,
Sarifudin
,
A.
,
Firdaus
,
R. A.
,
Ulfa
,
D. K.
,
Gandidi
,
I. M.
, and
Romadhon
,
R.
,
2022
, “
The Immersion Cooling Technology: Current and Future Development in Energy Saving
,”
Alex. Eng. J.
,
61
(
12
), pp.
9509
9527
.
32.
Wang
,
J.-X.
,
Li
,
Y.-Z.
,
Zhang
,
H.-S.
,
Wang
,
S.-N.
,
Liang
,
Y.-H.
,
Guo
,
W.
,
Liu
,
Y.
, and
Tian
,
S.-P.
,
2016
, “
A Highly Self-Adaptive Cold Plate for the Single-Phase Mechanically Pumped Fluid Loop for Spacecraft Thermal Management
,”
Energy Convers. Manage.
,
111
(
1
), pp.
57
66
.
33.
Gess
,
J.
,
Bhavnani
,
S. H.
, and
Johnson
,
R. W.
,
2014
, “
Thermal Resistance and PIV Characterization of a Line-Replaceable Compact Liquid-Cooled Server Module for High Performance Computing Platforms
,”
ASME 2014 International Mechanical Engineering Congress and Exposition
,
Montreal, Quebec, Canada
,
Nov. 14–20
, p.
V010T13A084
, Paper No. IMECE2014-38866.
34.
Xuequan
,
Y.
,
Hang
,
Y.
,
Gezi
,
Z.
, and
Haisan
,
W.
,
2010
, “
Simulation and Design of Printed Circuit Boards Utilizing Novel Embedded Capacitance Material
,”
IEEE International Symposium on Electromagnetic Compatibility
,
Fort Lauderdale, FL
,
July 25–30
,
IEEE
, pp.
228
232
, Paper No. 11832913.
35.
Tan
,
H.
,
Wu
,
L.
,
Wang
,
M.
,
Yang
,
Z.
, and
Du
,
P.
,
2019
, “
Heat Transfer Improvement in Microchannel Heat Sink by Topology Design and Optimization for High Heat Flux Chip Cooling
,”
Int. J. Heat Mass Transfer
,
129
, pp.
681
689
.
36.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1995
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
17
(
3
), pp.
54
73
.
37.
Marcellus
,
M.
,
Spilhaus Jr
,
A.
, and
Troeltzsch
,
L.
,
1961
, “
Heat Transfer Characteristics of Fluorochemical Inert Liquid FC-75
,”
J. Chem. Eng. Data
,
6
(
3
), pp.
459
463
.
38.
Arden
,
W. M.
,
2002
, “
The International Technology Roadmap for Semiconductors—Perspectives and Challenges for the Next 15 Years
,”
Curr. Opin. Solid State Mater. Sci.
,
6
(
5
), pp.
371
377
.
39.
Tao
,
W.
,
2001
,
Numerical Heat Transfer
, 2nd ed.,
Press Xian Jiatong University
,
China
.
40.
Zhao
,
J.
,
Huang
,
S.
,
Gong
,
L.
, and
Huang
,
Z.
,
2016
, “
Numerical Study and Optimizing on Micro Square Pin-Fin Heat Sink for Electronic Cooling
,”
Appl. Therm. Eng.
,
93
(
25
), pp.
1347
1359
.
41.
Zhuang
,
D.
,
Yang
,
Y.
,
Ding
,
G.
,
Du
,
X.
, and
Hu
,
Z.
,
2020
, “
Optimization of Microchannel Heat Sink With Rhombus Fractal-Like Units for Electronic Chip Cooling
,”
Int. J. Refrig.
,
116
, pp.
108
118
.
42.
Li
,
P.
,
Tang
,
M.
,
Huang
,
Z. X.
,
Jiang
,
L. J.
, and
Bağcı
,
H.
,
2020
, “
DC IR-Drop Analysis of Multilayered Power Distribution Network by Discontinuous Galerkin Method With Thermal Effects Incorporated
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
10
(
6
), pp.
1035
1042
.
43.
Intel
,
2021
, “
Device-Specific Power Delivery Network (PDN) Tool 2.0 User Guide
,” Version: 2021.08.24, ID. 683293.
44.
Md
,
O. H.
,
2019
, “
Power Delivery and Thermal Considerations for 2.5-D and 3-D Integration Technologies
,”
Ph.D. thesis
,
Georgia Institute of Technology
,
Atlanta, GA
.
You do not currently have access to this content.