Abstract

The high temperature generated on the contact interfaces of the conical friction element in clutches due to the sliding frictional heat should be responsible for the synchronization failure. In this study, an analytic model taking account of the capsizing moment and stress singularity at the end of the contact interface is established to solve the contact pressure distribution. Then, a three-dimensional finite element model has been developed to analyze the transient thermal behavior of the conical friction element. The contact pressure and temperature distribution generated along the contact interfaces are investigated and compared between the proposed new model, the combined wear assumption, and the uniform pressure assumption. Furthermore, the variations in temperature obtained from the new model and the other two assumptions are compared to the experimental results. The results show that the temperature simulated by the new model has a good agreement with reality. The maximum temperatures obtained by the new model are 95.53 °C and 71.67 °C, and the measured values are respectively 84.98 °C and 65.46 °C at the measuring position under the given two working conditions.

References

1.
Kerr
,
J. H.
,
2014
,
Concentric V-Groove Coupling: US Patent No. 0053525
.
2.
Wang
,
Y. Z.
, and
Wu
,
X. Y.
,
2018
, “
Investigation in the Effects of Configuration Parameters on the Thermal Behavior of Novel Conical Friction Plate in Continuously Sliding Condition
,”
CMC
,
56
(
3
), pp.
353
363
.
3.
Wu
,
X. Y.
, and
Wang
,
Y. Z.
,
2019
, “
Experimental Investigations of Tribological Performances of Novel Friction Pair With Different Conical Configurations
,”
Proc IMechE Part J: J Eng. Tribol.
,
233
(
8
), pp.
1245
1255
.
4.
Abdullah
,
O. I.
, and
Schlattmann
,
J.
,
2016
, “
Thermal Behavior of Friction Clutch Based on Uniform Pressure and Uniform Wear Assumptions
,”
Friction
,
4
(
3
), pp.
228
237
.
5.
Stojanovic
,
N.
,
Abdullah
,
O. I.
,
Rakisheva
,
Z. B.
,
Lattieff
,
F. A.
, and
Hashim
,
E. T.
,
2020
, “
The Effect of Applied Pressure Function on Thermo-Elastic Problem in the Dry Friction Clutches
,”
J Fail. Anal. Preven.
,
20
(
6
), pp.
2145
2152
.
6.
Abdullah
,
O. I.
,
Akhtar
,
M. J.
, and
Schlattmann
,
J.
,
2015
, “
Investigation of Thermo-Elastic Behavior of Multidisk Clutches
,”
ASME J. Tribol.
,
137
(
1
), p.
011703
.
7.
Abdullah
,
O. I.
, and
Schlattmann
,
J.
,
2014
, “
An Investigation Into the Thermal Behavior of the Grooved Dry Friction Clutch
,”
ASME J. Tribol.
,
136
(
3
), p.
034504
.
8.
Abdullah
,
O. I.
, and
Schlattmann
,
J.
,
2014
, “
Computation of Surface Temperatures and Energy Dissipation in Dry Friction Clutches for Varying Torque With Time
,”
Int. J Automot. Technol.
,
15
(
5
), pp.
733
740
.
9.
Abdullah
,
O. I.
,
Schlattmann
,
J.
,
Majeed
,
M. H.
, and
Sabri
,
L. A.
,
2018
, “
The Temperatures Distributions of a Single-Disc Clutches Using Heat Partitioning and Total Heat Generated Approaches
,”
Case Stud. Therm. Eng.
,
11
, pp.
43
54
.
10.
Topczewska
,
K.
,
Schlattmann
,
J.
, and
Abdullah
,
O. I.
,
2020
, “
Temperature and Thermal Stresses Distributions in a Dry Friction Clutch
,”
J. Theor. Appl. Mech.
,
58
(
2
), pp.
351
360
.
11.
Pisaturo
,
M.
, and
Senatore
,
A.
,
2016
, “
Simulation of Engagement Control in Automotive Dry-Clutch and Temperature Field Analysis Through Finite Element Model
,”
Appl. Therm. Eng.
,
93
, pp.
958
966
.
12.
Czl
,
B.
,
Vradi
,
K.
,
Albers
,
A.
, and
Mitariu
,
M.
,
2009
, “
Fe Thermal Analysis of a Ceramic Clutch
,”
Tribol. Int.
,
42
(
5
), pp.
714
723
.
13.
Fu
,
H.
,
Fu
,
L.
,
Liu
,
A. P.
, and
Zhang
,
G. L.
,
2010
, “
Finite Element Analysis of Temperature Field of Clutch in Tunnel Boring Machine
,”
ICIE'10: Proceedings of the 2010 WASE International Conference on Information Engineering – Volume 3
,
Beidaihe, Hebei
,
Aug. 14–15
, pp.
166
169
. .
14.
Yevtushenko
,
A.
, and
Kuciej
,
M.
,
2010
, “
Temperature and Thermal Stresses in a Pad/Disc During Braking
,”
Appl. Therm. Eng.
,
30
(
4
), pp.
354
359
.
15.
Li
,
W. B.
,
Huang
,
J. F.
,
Fei
,
J.
,
Cao
,
L. Y.
, and
Yao
,
C. Y.
,
2016
, “
Simulation and Application of Temperature Field of Carbon Fabric Wet Clutch During Engagement Based on Finite Element Analysis
,”
Int. Commun. Heat Mass Transf.
,
71
, pp.
180
187
.
16.
Cui
,
J. Z.
,
Wang
,
C. T.
,
Xie
,
F. W.
,
Xuan
,
R.
, and
Shen
,
G.
,
2014
, “
Numerical Investigation on Transient Thermal Behavior of Multidisc Friction Pairs in Hydro-Viscous Drive
,”
Appl. Therm. Eng.
,
67
(
1–2
), pp.
409
422
.
17.
Yuan
,
Z. W.
,
Tian
,
C.
,
Wu
,
M. L.
,
Zhou
,
J. J.
, and
Chen
,
C.
,
2021
, “
Modeling and Model Validation of Thermal Behavior of Railway Disc During Single Braking
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
5
), p.
051017
.
18.
Ingram
,
M.
,
Reddyhoff
,
T.
, and
Spikes
,
H. A.
,
2011
, “
Thermal Behaviour of a Slipping Wet Clutch Contact
,”
Tribol. Lett.
,
41
(
1
), pp.
23
32
.
19.
Jen
,
T. C.
, and
Nemecek
,
D. J.
,
2008
, “
Thermal Analysis of a Wet-Disk Clutch Subjected to a Constant Energy Engagement
,”
Int. J. Heat Mass Transfer
,
51
(
7-8
), pp.
1757
1769
.
20.
Wu
,
J. P.
,
Ma
,
B.
,
Li
,
H. Y.
, and
Wang
,
L. Y.
,
2021
, “
The Temperature Field of Friction Disc in Wet Clutch Involving the Unconventional Heat Dissipation on the Contact Surface
,”
Tribol. Trans.
,
64
(
1
), pp.
1
9
.
21.
Bao
,
H. Y.
,
Kong
,
W. D.
,
Hou
,
X. N.
, and
Zhu
,
R. P.
,
2021
, “
Analysis on Temperature Field of Friction Pair of Aviation Friction Clutch Based on Different Groove Shapes of Friction Disk
,”
J. Mech. Sci. Technol.
,
35
(
8
), pp.
3735
3742
.
22.
Meng
,
F.
, and
Xi
,
J. Q.
,
2021
, “
Numerical and Experimental Investigation of Temperature Distribution for Dry-Clutches
,”
Machines
,
9
(
9
), p.
185
.
23.
China Standards Press
.
China Aviation Materials Handbook
. 1: Structural Steel Stainless Steel. Editor, 1988.
24.
Sackfield
,
A.
,
Truman
,
C. E.
, and
Hills
,
D. A.
,
2001
, “
The Tilted Punch Under Normal and Shear Load (With Application to Fretting Tests)
,”
Int. J. Mech. Sci.
,
43
(
8
), pp.
1881
1892
.
25.
Gladwell
,
G.
,
1980
,
Contact Problems in the Classical Theory of Elasticity
,
Springer
,
New York
.
26.
Pronikov
,
A. S.
,
1957
,
Lenos and the Durability of Machine Tools
,
Mashgie
,
Kiev-Moscow
, p.
275c
.
27.
Pronikov
,
A. S.
,
1969
,
Fundamentals of Reliability and Durability of Machines.
Led-instandards
, p.
160c
.
28.
Wang
,
Y. Z.
,
Dou
,
D. L.
, and
Meng
,
X. W.
,
2021
, “
Thermal Behavior of Multi-Conical Wet Clutch based on Combined Wear Law
,”
Proceedings of the 13th International Conference on Computer Modeling and Simulation (ICCMS ‘21)
,
Melbourne, VIC, Australia
,
June 25–27
,
Association for Computing Machinery
,
New York
, pp.
195
202
.
29.
Grze
,
P.
,
2011
, “
Partition of Heat in 2D Finite Element Model of a Disc Brake
,”
Acta Mechan. Automat
,
5
(
2
), pp.
35
41
.
30.
Gnecco
,
E.
, and
Meyer
,
E.
,
2015
,
Elements of Friction Theory and Nanotribology: Introduction
,
Cambridge University Press
,
Cambridge, UK
.
31.
Fukuoka
,
T.
, and
Xu
,
Q.
,
1999
, “
Evaluations of Thermal Contact Resistance in an Atmospheric Environment
,”
Trans. Jpn. Soc. Mech. Eng. Series A
,
65
(
630
), pp.
248
253
.
32.
Fukuoka
,
T.
,
Nomura
,
M.
, and
Yamada
,
A.
,
2010
, “
Evaluation of Thermal Contact Resistance at the Interface Composed of Dissimilar Materials
,”
Trans. Jpn. Soc. Mech. Eng. Part A
,
76
(
763
), pp.
344
350
.
You do not currently have access to this content.