Abstract

R290 is considered to be an excellent alternative refrigerant for domestic air conditioners in the future. In this article, computational fluid dynamics (CFD) numerical simulation was used to obtain the flow field distribution of R290 in a microfine circular tube with an inner diameter of 2 mm under a specific range of working conditions, and the effects of saturation temperature, mass flow density, heat flow density, and tube type on the boiling heat transfer characteristics of R290 tube were investigated. The results show that the boiling heat transfer coefficient increases with the increase of saturation temperature, and the maximum value of the heat transfer coefficient increases by 8.1% when the saturation temperature increases from 284 K to 286 K. The boiling heat transfer coefficient increases with the increase of mass flow density, and the maximum value appears in the medium dryness range. The boiling heat transfer coefficient in the tube increases and then decreases when the heat flow density increases from 10 kW/m2 to 20 kW/m2 and increases faster at high heat flow density conditions. In addition, compared with the circular tube, the boiling heat transfer coefficient in the elliptical tube with an aspect ratio of 1.56 increases by 2.78% for R290 under the same flow area.

References

1.
Du
,
Y.
,
Wu
,
J.
, and
Wang
,
C.
,
2020
, “
Experimental Study on Dynamic Characteristics of an R290 Heat Pump During Defrost
,”
Energy Build.
,
223
(
18
), p.
110174
.
2.
Du
,
Y.
,
Wu
,
J.
,
Che
,
W.
, and
Li
,
J.
,
2019
, “
Experimental Study on Electronic Expansion Valve Failure of a R290 Room Air Conditioner During Heating-Defrosting Process
,”
Appl. Therm. Eng.
,
163
(
18
), p.
114432
.
3.
Cheng
,
S.
,
Wang
,
S.
, and
Liu
,
Z.
,
2014
, “
Cycle Performance of Alternative Refrigerants for Domestic Air-Conditioning System Based on a Small Finned Tube Heat Exchanger
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
83
92
.
4.
Dai
,
Y.
,
Lin
,
Q.
,
Zou
,
S.
, and
Guo
,
Y.
,
2017
, “
Boiling Heat Transfer Performances of R290 in Smooth Horizontal Tubes
,”
CIESC J.
,
68
(
9
), pp.
3420
3426
.
5.
Li
,
K.
,
He
,
G.
,
Jiang
,
J.
,
Li
,
Y.
, and
Cai
,
D.
,
2018
, “
Flow Boiling Heat Transfer Characteristics and Pressure Drop of R290/Oil Solution in Smooth Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
119
(
4
), pp.
777
790
.
6.
Salman
,
M.
,
Prabakaran
,
R.
,
Kumar
,
P. G.
,
Lee
,
D.
, and
Kim
,
S. C.
,
2023
, “
Saturation Flow Boiling Characteristics of R290 (Propane) Inside a Brazed Plate Heat Exchanger With Offset Strip Fins
,”
Int. J. Heat Mass Transfer
,
202
(
3
), p.
123778
.
7.
He
,
K.
,
Liu
,
J.
, and
Yu
,
X.
,
2019
, “
Flow Boiling Heat Transfer Characteristics of R290 in 5 mm Small-Diameter Tubes
,”
J. Refrig.
,
40
(
5
), pp.
118
123
.
8.
Lillo
,
G.
,
Mastrullo
,
R.
,
Mauro
,
A. W.
, and
Viscito
,
L.
,
2018
, “
Flow Boiling Heat Transfer, Dry-Out Vapor Quality and Pressure Drop of Propane (R290): Experiments and Assessment of Predictive Methods
,”
Int. J. Heat Mass Transfer
,
126
(
11
), pp.
1236
1252
.
9.
Wang
,
L.
,
Dai
,
Y.
,
Tian
,
S.
, and
Lin
,
Q.
,
2020
, “
Experimental Investigation on Characteristics of R290 Boiling Heat Transfer in Horizontal Micro-Fin Tubes With Small Diameter
,”
CIESC J.
,
71
(
3
), pp.
1026
1034
.
10.
Liu
,
P.
,
Liu
,
J.
, and
Zhang
,
L.
,
2020
, “
Boiling Heat Transfer and Pressure Drop Characteristics of R32 and R290 in Small Tube Diameter
,”
J. Eng. Therm. Energy Power
,
35
(
7
), pp.
139
144
.
11.
Oudah
,
M. H.
, and
Yasser
,
Z. K.
,
2024
, “
Comparative Investigation of R1270, R290, and R600a Boiling in Microfin and Smooth Tubes
,”
Heat Mass Transfer
,
60
(
4
), pp.
599
616
.
12.
Dai
,
Y.
,
Zhu
,
S.
,
Guo
,
Y.
, and
Zou
,
S.
,
2022
, “
Numerical Study on Condensation Heat Transfer of R290 Inside a 4-mm-ID Horizontal Smooth Tube
,”
J. Braz. Soc. Mech. Sci. Eng.
,
44
(
1
), p.
1
.
13.
Dai
,
Y.
,
Huang
,
Z.
,
Li
,
X.
, and
Nie
,
B.
,
2019
, “
Simulation on Flow Boiling Heat Transfer of R290 in Micro-Ribbed Tube
,”
Cryo.
,
2019
(
5
), pp.
35
39
.
14.
Wang
,
J.
,
Zhu
,
S.
, and
Xie
,
J.
,
2021
, “
Investigation of R290 Flow Boiling Heat Transfer and Exergy Loss in a Double-Concentric Pipe Based on CFD
,”
Energies
,
14
(
21
), p.
7121
.
15.
Zhu
,
S.
,
Wang
,
J.
, and
Xie
,
J.
,
2021
, “
Numerical Investigation of the Heat Transfer Characteristics of R290 Flow Boiling in Corrugated Tubes With Different Internal Corrugated Structures
,”
Mathematics
,
9
(
22
), p.
2969
.
16.
Zou
,
X.
,
Gong
,
M. Q.
,
Chen
,
G. F.
,
Sun
,
Z. H.
,
Zhang
,
Y.
, and
Wu
,
J. F.
,
2010
, “
Experimental Study on Saturated Flow Boiling Heat Transfer of R170/R290 Mixtures in a Horizontal Tube
,”
Int. J. Refrig.
,
33
(
2
), pp.
371
380
.
17.
Park
,
K.-J.
, and
Jung
,
D.
,
2009
, “
Performance of Heat Pumps Charged With R170/R290 Mixture
,”
Appl. Energy
,
86
(
12
), pp.
2598
2603
.
18.
Zhu
,
Y.
,
Wu
,
X.
, and
Wei
,
Z.
,
2015
, “
Heat Transfer Characteristics and Correlation for CO2/Propane Mixtures Flow Evaporation in a Smooth Mini Tube
,”
Appl. Therm. Eng.
,
81
(
8
), pp.
253
261
.
19.
Wang
,
H.
,
Liu
,
J.
,
Zhang
,
L.
, and
Yu
,
X.
,
2020
, “
Study on Boiling Heat Transfer Characteristics of R290 in Horizontal Micro-Tubes
,”
J. Refrig.
,
41
(
3
), pp.
78
82, 90
.
20.
Ge
,
Q.
,
Liu
,
J.
,
Zhang
,
L.
, and
Zhang
,
H.
,
2015
, “
Experimental Study of the Boiling Heat Exchange of R290 Inside a Micro-Channel
,”
J. Eng. Therm. Energy Power
,
30
(
5
), pp.
672
677
.
21.
Feng
,
G.
,
Liu
,
J.
,
Wang
,
H.
, and
He
,
K.
,
2019
, “
The Study on R290 Characteristics of Flow Boiling Friction Pressure Drop in Mini-Channels
,”
J. Eng. Therm. Energy Power
,
34
(
12
), pp.
73
78
.
22.
Zhou
,
X.
,
Liu
,
J.
,
Xu
,
X.
, and
Zhang
,
L.
,
2017
, “
Experimental Study on Flow Boiling Heat Transfer Characteristics of R290 in MicroChannel
,”
J. Eng. Therm. Energy Power
,
32
(
4
), pp.
38
42
.
23.
Chien
,
N. B.
,
Vu
,
P. Q.
,
Choi
,
K.-I.
, and
Oh
,
J.-T.
,
2016
, “
Boiling Heat Transfer of R32, CO2 and R290 Inside Horizontal Minichannel
,”
8th International Conference on Applied Energy (ICAE)
,
Beijing, China
,
Oct. 8–12
, pp.
4822
4827
.
24.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface-Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
25.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
. 1598-1605. 10.2514/3.12149
26.
Lee
,
W. H.
,
2013
, “A Pressure Iteration Scheme for Two-Phase Flow Modeling,”
Computational Methods for Two-Phase Flow and Particle Transport: (With CD-ROM)
, pp.
61
82
.
You do not currently have access to this content.