Abstract

The Astragalus membranaceus (AM) slices was dried using three infrared drying techniques, including near-infrared drying (NIR), mid-infrared drying (MIR), and far-infrared drying (FIR). Studies and discussions about the impacts of infrared temperature, power, slice thickness, and wavelength on the drying properties, energy consumption, and associated performance were conducted. Results showed that the drying rate increased with increasing infrared temperature and wavelength, and with decreasing slice thickness, whereas the drying process was not significantly influenced by the infrared power. The drying efficiency of FIR was superior to that of NIR, and with the increase in temperature, this improvement became more obvious. FIR drying was the fastest with the least energy consumption among the three drying methods. Rehydration ratio and color change of AM slices were proportional to infrared temperature and wavelength, but inversely proportional to slice thickness. The effective moisture diffusion coefficients of AM slices under NIR and FIR drying ranged from 0.49244 × 10−9 to 1.16352 × 10−9 m2/s and 1.00432 × 10−9 to 2.51135 × 10−9 m2/s, respectively.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Li
,
Y.
,
Guo
,
S.
,
Zhu
,
Y.
,
Yan
,
H.
,
Qian
,
D. W.
,
Wang
,
H. Q.
,
Yu
,
J. Q.
, and
Duan
,
J. A.
,
2019
, “
Comparative Analysis of Twenty-Five Compounds in Different Parts of Astragalus Membranaceus var. Mongholicus and Astragalus Membranaceus by UPLC-MS/MS
,”
J. Pharm. Anal.
,
9
(
6
), pp.
392
399
.
2.
Fu
,
J.
,
Wang
,
Z.
,
Huang
,
L.
,
Zheng
,
S.
,
Wang
,
D.
,
Chen
,
S.
,
Zhang
,
H.
, and
Yang
,
S.
,
2014
, “
Review of the Botanical Characteristics, Phytochemistry, and Pharmacology of Astragalus Membranaceus (Huangqi)
,”
Phytother. Res.
,
28
(
9
), pp.
1275
1283
.
3.
Zhang
,
J.
,
Wu
,
C.
,
Gao
,
L.
,
Du
,
G.
, and
Qin
,
X.
,
2020
, “
Astragaloside IV Derived From Astragalus Membranaceus: A Research Review on the Pharmacological Effects
,”
Adv. Pharmacol.
,
87
, pp.
89
112
.
4.
Li
,
S.
,
Sun
,
Y.
,
Huang
,
J.
,
Wang
,
B.
,
Gong
,
Y.
,
Fang
,
Y.
,
Liu
,
Y.
, et al
,
2020
, “
Anti-Tumor Effects and Mechanisms of Astragalus Membranaceus (AM) and Its Specific Immunopotentiation: Status and Prospect
,”
Ethnopharmacol
,
258
, p.
112797
.
5.
Farag
,
M. R.
, and
Alagawany
,
M.
,
2018
, “
The Role of Astragalus Membranaceus as Immunomodulator in Poultry
,”
World’s Poult. Sci. J.
,
75
(
1
), pp.
1
12
.
6.
Wu
,
S.
,
2018
, “
Effect of Dietary Astragalus Membranaceus Polysaccharide on the Growth Performance and Immunity of Juvenile Broilers
,”
Poult. Sci.
,
97
(
10
), pp.
3489
3493
.
7.
Zhang
,
X.
,
2020
,
Hot air Drying Mechanism and Energy Efficiency Evaluation Analysis of AM
,
Southwest University
,
Chongqing
.
8.
Huang
,
D.
,
Yang
,
P.
,
Qin
,
Y.
,
Gong
,
G.
,
Tang
,
X.
,
Luo
,
W.
,
Luo
,
L.
, and
Sunden
,
B.
,
2022
, “
Infrared Drying Characteristics and Quality Variations of Lily Bulbs Under Blanching Pretreatment
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
9
), p.
091005
.
9.
Wei
,
Q.
,
2015
,
Experimental Study on Vacuum Freeze Drying of AM
,
Shanxi Agricultural University
,
Taiyuan
.
10.
Doymaz
,
I.
,
2012
, “
Infrared Drying of Sweet Potato (Ipomoea Batatas L.) Slices
,”
J. Food Sci. Technol.
,
49
(
6
), pp.
760
766
.
11.
Doymaz
,
B.
,
2015
, “
Infrared Drying Kinetics and Quality Characteristics of Carrot Slices
,”
J. Food Process. Preserv.
,
39
(
6
), pp.
2738
2745
.
12.
Doymaz
,
I.
,
2018
, “
Infrared Drying of Kiwifruit Slices
,”
Int. J. Green Energy
,
15
(
11–15
), pp.
1
7
.
13.
Wang
,
L.
,
Zhang
,
M.
,
Fang
,
Z.
, and
Xu
,
B.
,
2014
, “
Application of Intermediate-Wave Infrared Drying in Preparation of Mushroom Chewing Tablets
,”
Drying Technol.
,
32
(
15
), pp.
1820
1827
.
14.
Touil
,
A.
,
Chemkhi
,
S.
, and
Zagrouba
,
F.
,
2014
, “
Moisture Diffusivity and Shrinkage of Fruit and Cladode of Opuntia Ficus-Indica During Infrared Drying
,”
J. Food Process.
,
2014
, p.
175402
.
15.
Ai
,
Z.
,
Ren
,
H.
,
Lin
,
Y.
,
Sun
,
W.
,
Yang
,
Z.
,
Zhang
,
Y.
,
Zhang
,
H.
,
Yang
,
Z.
,
Pandiselvam
,
R.
, and
Liu
,
Y.
,
2022
, “
Improving Drying Efficiency and Product Quality of Stevia Rebaudiana Leaves Using Innovative Medium-and Short-Wave Infrared Drying (MSWID)
,”
Innovative Food Sci. Emerging Technol.
,
81
, p.
103154
.
16.
Bai
,
R.
,
Sun
,
J.
,
Qiao
,
X.
,
Zheng
,
Z.
,
Li
,
M.
, and
Zhang
,
B.
,
2023
, “
Hot Air Convective Drying of Ginger Slices: Drying Behaviour, Quality Characteristics, Optimisation of Parameters, and Volatile Fingerprints Analysis
,”
Foods
,
12
(
6
), p.
1283
.
17.
Amiri Chayjan
,
R.
,
2012
, “
Modeling Some Drying Characteristics of High Moisture Potato Slices in Fixed, Semi Fluidized and Fluidized Bed Conditions
,”
J. Agric. Sci. Technol.
,
14
(
6
), pp.
1229
1241
.
18.
Mahayothee
,
B.
,
Thamsala
,
T.
,
Khuwijitjaru
,
P.
, and
Janjai
,
S.
,
2020
, “
Effect of Drying Temperature and Drying Method on Drying Rate and Bioactive Compounds in Cassumunar Ginger (Zingiber Montanum)
,”
J. Appl. Res. Med. Aromat. Plants
,
18
, p.
100262
.
19.
Doymaz
,
I.
,
Kipcak
,
A. S.
, and
Piskin
,
S.
,
2015
, “
Characteristics of Thin-Layer Infrared Drying of Green Bean
,”
Czech J. Food Sci.
,
33
(
1
), pp.
83
90
.
20.
Tekin
,
Z. H.
, and
Baslar
,
M.
,
2018
, “
The Effect of Ultrasound-Assisted Vacuum Drying on the Drying Rate and Quality of Red Peppers
,”
J. Therm. Anal. Calorim.
,
132
(
2
), pp.
1131
1143
.
21.
Ning
,
X.
,
Lee
,
J.
, and
Han
,
C.
,
2015
, “
Drying Characteristics and Quality of Red Ginseng Using Far-Infrared Rays
,”
J. Ginseng Res.
,
39
(
4
), pp.
371
375
.
22.
Sharma
,
G.
, and
Prasad
,
S.
,
2006
, “
Specific Energy Consumption in Microwave Drying of Garlic Cloves
,”
Energy
,
31
(
12
), pp.
1921
1926
.
23.
Das
,
I.
, and
Das
,
S.
,
2010
, “Emitters and Infrared Heating System Design,”
Infrared Heating for Food and Agricultural Processing
,
Z.
Pan
, and
G. G.
Atungulu
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
57
88
.
24.
Pawar
,
S. B.
, and
Pratape
,
V.
,
2017
, “
Fundamentals of Infrared Heating and Its Application in Drying of Food Materials: A Review
,”
J. Food Process Eng.
,
40
(
1
), p.
e12308
.
25.
Sakai
,
N.
, and
Hanzawa
,
T.
,
1994
, “
Applications and Advances in Far-Infrared Heating in Japan
,”
Trends Food Sci. Technol.
,
5
(
11
), pp.
357
362
.
26.
Abano
,
E. E.
,
Ma
,
H. L.
, and
Qu
,
W.
,
2014
, “
Thin-Layer Catalytic Far-Infrared Radiation Drying and Flavour of Tomato Slices
,”
J. Agric. Eng.
,
45
(
1
), pp.
37
45
.
27.
Wang
,
L.
,
Li
,
C.
,
Liu
,
M.
,
Li
,
K.
,
Ye
,
X.
,
Wang
,
Z.
,
Fan
,
L.
, et al
,
2023
, “
Research Status of Drying Technology and Equipment of Chinese Herbal Medicines
,”
Nongye Gongcheng Xuebao/Trans. Chin. Soc. Agric. Eng.
,
40
(
02
), pp.
1
28
.
28.
Oliveira
,
N. L.
,
Silva
,
S. H.
,
de Abreu Figueiredo
,
J.
,
Norcino
,
L. B.
, and
de Resende
,
J. V.
,
2021
, “
Infrared-Assisted Freeze-Drying (IRFD) of Açai Puree: Effects on the Drying Kinetics, Microstructure and Bioactive Compounds
,”
Innovative Food Sci. Emerging Technol.
,
74
, p.
102843
.
29.
Jeevarathinam
,
G.
,
Pandiselvam
,
R.
,
Pandiarajan
,
T.
,
Preetha
,
P.
,
Balakrishnan
,
M.
,
Thirupathi
,
V.
, and
Kothakota
,
A.
,
2021
, “
Infrared Assisted Hot Air Dryer for Turmeric Slices: Effect on Drying Rate and Quality Parameters
,”
Lwt
,
144
, p.
111258
.
30.
El-Mesery
,
H. S.
,
Kamel
,
R. M.
, and
Emara
,
R. Z.
,
2021
, “
Influence of Infrared Intensity and Air Temperature on Energy Consumption and Physical Quality of Dried Apple Using Hybrid Dryer
,”
Case Stud. Therm. Eng.
,
27
, p.
101365
.
31.
Taghinezhad
,
E.
,
Kaveh
,
M.
, and
Szumny
,
A.
,
2021
, “
Thermodynamic and Quality Performance Studies for Drying Kiwi in Hybrid Hot Air-Infrared Drying With Ultrasound Pretreatment
,”
Appl. Sci.
,
11
(
3
), p.
1297
.
32.
Liu
,
Y.
,
Zhu
,
W.
,
Luo
,
L.
,
Li
,
X.
, and
Yu
,
H.
,
2013
, “
A Mathematical Model for Vacuum Far-Infrared Drying of Potato Slices
,”
Drying Technol.
,
32
(
2
), pp.
180
189
.
33.
Zhou
,
L.
,
Guo
,
X.
,
Bi
,
J.
,
Yi
,
J.
,
Chen
,
Q.
,
Wu
,
X.
, and
Zhou
,
M.
,
2017
, “
Drying of Garlic Slices (Allium Sativum L.) and Its Effect on Thiosulfinates, Total Phenolic Compounds and Antioxidant Activity During Infrared Drying
,”
J. Food Process. Preserv.
,
41
(
1
), p.
e12734
.
34.
Salehi
,
F.
, and
Satorabi
,
M.
,
2021
, “
Influence of Infrared Drying on Drying Kinetics of Apple Slices Coated With Basil Seed and Xanthan Gums
,”
Int. J. Fruit Sci.
,
21
(
1
), pp.
519
527
.
35.
Zhang
,
D.
,
Huang
,
D.
,
Zhang
,
Y.
,
Lu
,
Y.
,
Huang
,
S.
,
Gong
,
G.
, and
Li
,
L. J. U. S.
,
2023
, “
Ultrasonic Assisted Far Infrared Drying Characteristics and Energy Consumption of Ginger Slices
,”
Ultrason. Sonochem.
,
92
, p.
106287
.
36.
Zhang
,
Y.
,
Zhu
,
G.
,
Li
,
X.
,
Zhao
,
Y.
,
Lei
,
D.
,
Ding
,
G.
,
Ambrose
,
K.
, and
Liu
,
Y.
,
2020
, “
Combined Medium- and Short-Wave Infrared and Hot Air Impingement Drying of Sponge Gourd (Luffa Cylindrical) Slices
,”
J. Food Eng.
,
284
, p.
110043
.
37.
X
,
B.
,
2020
,
“Design and Research of Continuous Infrared hot air Combined Dryer
,
Inner Mongolia Agricultural University
,
Hohhot
.
38.
Aydogdu
,
A.
,
Sumnu
,
G.
, and
Sahin
,
S.
,
2015
, “
Effects of Microwave-Infrared Combination Drying on Quality of Eggplants
,”
Food Bioprocess Technol.
,
8
(
6
), pp.
1198
1210
.
39.
Salehi
,
F.
,
Kashaninejad
,
M.
, and
Jafarianlari
,
A.
,
2017
, “
Drying Kinetics and Characteristics of Combined Infrared-Vacuum Drying of Button Mushroom Slices
,”
Heat Mass Transfer
,
53
(
5
), pp.
1751
1759
.
40.
Nadian
,
M. H.
,
Rafiee
,
S.
,
Aghbashlo
,
M.
,
Hosseinpour
,
S.
, and
Mohtasebi
,
S. S.
,
2015
, “
Continuous Real-Time Monitoring and Neural Network Modeling of Apple Slices Color Changes During Hot Air Drying
,”
Food Bioprod. Process.
,
94
, pp.
263
274
.
41.
Li
,
W. Q.
,
Wan
,
F. X.
,
Luo
,
Y.
,
Wei
,
B.
, and
Huang
,
X. P.
,
2019
, “
Characterization and Kinetics of Far-Infrared Drying of Angelica Slices
,”
J. Chin. Herbal Med.
,
50
(
18
), pp.
4320
4328
.
42.
Karacabey
,
E.
,
Baltacioglu
,
C.
,
Cevik
,
M.
, and
Kalkan
,
H.
,
2016
, “
Optimization of Microwave-Assisted Drying of Jerusalem Artichokes (Helianthus Tuberosus L.) by Response Surface Methodology and Genetic Algorithm
,”
Ital. J. Food Ence
,
28
(
1
), pp.
121
130
.
43.
Doymaz
,
İ
, and
Özdemir
,
Ö
,
2014
, “
Effect of Air Temperature, Slice Thickness and Pretreatment on Drying and Rehydration of Tomato
,”
Int. J. Food Sci. Technol.
,
49
(
2
), p.
558
564
.
44.
Özkan-Karabacak
,
A.
,
Acoğlu
,
B.
,
Yolci Ömeroğlu
,
P.
, and
Çopur
,
ÖU
,
2020
, “
Microwave Pre-Treatment for Vacuum Drying of Orange Slices: Drying Characteristics, Rehydration Capacity and Quality Properties
,”
J. Food Process Engi.
,
43
(
11
), pp.
13511
.
45.
Dehghannya
,
J.
,
Bozorghi
,
S.
, and
Heshmati
,
M. K.
,
2017
, “
Low Temperature Hot Air Drying of Potato Cubes Subjected to Osmotic Dehydration and Intermittent Microwave: Drying Kinetics, Energy Consumption and Product Quality Indexes
,”
Heat Mass Transfer
,
54
(
4
), pp.
929
954
.
46.
Joseph Bassey
,
E.
,
Cheng
,
J. H.
, and
Sun
,
D. W.
,
2022
, “
Improving Drying Kinetics, Physicochemical Properties and Bioactive Compounds of red Dragon Fruit (Hylocereus Species) by Novel Infrared Drying
,”
Food Chem.
,
375
, p.
131886
.
47.
Doymaz
,
B.
,
2016
, “
Drying Kinetics, Rehydration and Colour Characteristics of Convective Hot-Air Drying of Carrot Slices
,”
Heat Mass Transfer
,
53
(
1
), pp.
1
11
.
48.
Liu
,
Y.
,
Sun
,
Y.
,
Miao
,
S.
,
Li
,
F.
, and
Luo
,
D.
,
2015
, “
Drying Characteristics of Ultrasound Assisted Hot Air Drying of Flos Lonicerae
,”
J. Food Sci. Technol.
,
52
(
8
), pp.
4955
4964
.
49.
Koukouch
,
A.
,
Idlimam
,
A.
,
Asbik
,
M.
,
Sarh
,
B.
,
Izrar
,
B.
,
Bostyn
,
S.
,
Bah
,
A.
,
Ansari
,
O.
,
Zegaoui
,
O.
, and
Amine
,
A.
,
2017
, “
Experimental Determination of the Effective Moisture Diffusivity and Activation Energy During Convective Solar Drying of Olive Pomace Waste
,”
Renewable Energy
,
101
, pp.
565
574
.
50.
Amini
,
G.
,
Salehi
,
F.
, and
Rasouli
,
M.
,
2022
, “
Color Changes and Drying Kinetics Modeling of Basil Seed Mucilage During Infrared Drying Process
,”
Inf. Process. Agric.
,
9
(
3
), pp.
397
405
.
51.
Tian
,
H.
,
2020
, “
Establishment of Dynamic Model for Microwave Drying of Ginger
,”
Storage Process
,
20
(
01
), pp.
127
132
.
You do not currently have access to this content.