Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In the combustor for rocket engines, liquid film cooling is a widely adopted technique for restricting the structural components to the acceptable bounds for the successful operation of the propulsion systems. Multiple cooling techniques for thrust chamber walls are favored along with the coolant film in propulsion systems operating at higher chamber pressures by incorporating an ablative cooling mechanism for the nozzle. The adoption of combination will result in challenges in simulation studies due to the presence of multiphase phenomenon in the system. The current article presents the effects of these two cooling methods on a thrust chamber wall studied through compressible multiphase formulations. A majority of the previous studies have used incompressible flow equations to model coolant film behavior and associated heat transfer. The present study utilizes an approach utilizing compressible multiphase flow to simulate the behavior of the compressible hot gas flow and the incompressible coolant liquid film accounting for phase change effects, vapor diffusion into hot gas, radiation effects on coolant surface, liquid entrainment, and blowing effects due to vapor formation at interface. Film-cooling effects on ablative nozzle accounting for pyrolysis phenomenon due to material decomposition governed by Arrhenius expression are also emphasized. The outcome of the numerical model showed good agreement with available test data in literature, and results from the tests done in-house. The model described in the present study was able to support the actual evidence of liquid film cooling being able to preserve the walls of the thrust chamber from severe internal thermal environment and prevent ablation on surface of nozzle.

References

1.
Shine
,
S. R.
, and
Nidhi
,
S. S.
,
2018
, “
Review on Film Cooling of Liquid Rocket Engines
,”
Propuls. Power Res.
,
7
(
1
), pp.
1
18
.
2.
Ludescher
,
S.
, and
Olivier
,
H.
,
2018
, “
Experimental Investigations of Film Cooling in a Conical Nozzle Under Rocket-Engine-Like Flow Conditions
,”
AIAA J.
,
57
(
3
), pp.
1172
1183
.
3.
Heufer
,
K. A.
, and
Olivier
,
H.
,
2008
, “
Experimental and Numerical Study of Cooling Gas Injection in Laminar Supersonic Flow
,”
AIAA J.
,
46
(
11
), pp.
2741
2751
.
4.
Adams
,
N. A.
,
Schröder
,
W.
,
Radespiel
,
R.
,
Haidn
,
O. J.
,
Sattelmayer
,
T.
,
Stemmer
,
C.
, and
Weigand
,
B.
,
2021
,
Future Space-Transport-System Components Under High Thermal and Mechanical Loads
,
Springer
,
New York
, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 146.
5.
Kinney
,
G. R.
,
Abramson
,
A. E.
, and
Sloop
,
J. L.
,
1952
, “
Internal Film Cooling Experiments With 2 and 4 inch Smooth Surface Tubes and Gas Temperatures to 2000 °F in 2- and 4-Inch Diameter Horizontal Tubes
,” NACA Report No. 1087.
6.
Stechman
,
C. R.
,
Oberstone
,
J.
, and
Howell
,
J. C.
,
1969
, “
Design Criteria for Film Cooling for Small Liquid-Propellant Rocket Engines
,”
J. Spacecraft Rockets
,
6
(
2
), pp.
97
102
.
7.
Shembharkar
,
T. R.
, and
Pai
,
B. R.
,
1986
, “
Prediction of Film Cooling With a Liquid Coolant
,”
Int. J. Heat Mass Transfer
,
29
(
6
), pp.
899
908
.
8.
Zhang
,
H. W.
,
Tao
,
W. Q.
,
He
,
Y. L.
, and
Zhang
,
W.
,
2006
, “
Numerical Study of Liquid Film Cooling in a Rocket Combustion Chamber
,”
Int. J. Heat Mass Transfer
,
49
(
1
), pp.
349
358
.
9.
Shine
,
S. R.
,
Sunil Kumar
,
S.
, and
Suresh
,
B. N.
,
2012
, “
A New Generalised Model for Liquid Film Cooling in Rocket Combustion Chambers
,”
Int. J. Heat Mass Transfer
,
55
(
19–20
), pp.
5065
5075
.
10.
Wang
,
T.
,
Sun
,
B.
,
Liu
,
D.
, and
Xiang
,
J.
,
2018
, “
Experimental Investigation of Two-Dimensional Wall Thermal Loads in the Near-Injector Region of a Film-Cooled Combustion Chamber
,”
Appl. Therm. Eng.
,
138
(
25
), pp.
913
923
.
11.
Xiang
,
J.
,
Sun
,
B.
,
Wang
,
T.
, and
Yuan
,
J.
,
2020
, “
Effects of Angled Film-Cooling on Cooling Performance in a GO2/GH2 Subscale Thrust Chamber
,”
Appl. Therm. Eng.
,
166
(
5
), p.
114627
.
12.
Strokach
,
E. A.
,
Borovik
,
I. N.
,
Bazarov
,
V. G.
, and
Haidn
,
O. J.
,
2020
, “
Numerical Study of Operational Processes in a GOx-Kerosene Rocket Engine With Liquid Film Cooling
,”
Propuls. Power Res.
,
9
(
2
), pp.
132
141
.
13.
Yang
,
W.
, and
Sun
,
B.
,
2012
, “
Numerical Simulation of Liquid Film in a Liquid Oxygen/Rocket Propellant 1 Liquid Rocket
,”
J. Thermophys. Heat Transfer
,
26
(
2
), pp.
328
336
.
14.
Miller
,
R. P.
, and
Coy
,
E. B.
,
2011
, “
Studies in Optimizing the Film Flow Rate for Liquid Film Cooling
,”
Proceedings of 47th AIAA Joint Propulsion Conference
,
San Diego, CA
,
July 31–Aug. 3
, Paper No. AIAA 2011-5779.
15.
Tsay
,
Y. L.
, and
Lin
,
T. F.
,
1990
, “
Evaporation of a Heated Falling Liquid Film Into a Laminar Gas Stream
,”
Exp. Therm. Fluid. Sci.
,
11
(
1
), pp.
853
865
.
16.
Banerjee
,
R.
,
2008
, “
Turbulent Conjugate Heat and Mass Transfer From the Surface of a Binary Mixture of Ethanol/Iso-Octane in a Countercurrent Stratified Two-Phase Flow System
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
5958
5974
.
17.
Liou
,
M. S.
,
2006
, “
A Sequel to AUSM, Part II: AUSM+-Up for All Speeds
,”
J. Comput. Phys.
,
214
(
1
), pp.
137
170
.
18.
Liou
,
M. S.
, and
Steffen
,
C. J.
,
1993
, “
A New Flux Splitting Scheme
,”
J. Comput. Phys.
,
107
(
1
), pp.
23
39
.
19.
Gordon
,
S.
, and
McBride
,
B. J.
,
1994
, “
Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications Part 1: Analysis
,” NASA Reference Publication No. 1311.
20.
Alanyalıoglu
,
C. O.
, and
Özyörük
,
Y.
,
2019
, “
Fully Transient Conjugate Analysis of Silica-Phenolic Charing Ablation Coupled With Interior Ballistics
,”
Proceedings of the AIAA Propulsion and Energy 2019 Forum
,
Indianapolis, IN
,
Aug. 19–22
, pp.
1
27
.
21.
Alexandre
,
C.
,
Pierre
,
B.
, and
Richard
,
S.
,
2017
, “
A Simple and Fast Phase Transition Relaxation Solver for Compressible Multi-Component Two-Phase Flows
,”
Comput. Fluids
,
150
(
3
), pp.
31
45
.
22.
Chiapolino
,
A.
,
Boivin
,
P.
, and
Saurel
,
R.
,
2017
, “
A Simple Phase Transition Relaxation Solver for Liquid-Vapor Flows
,”
Int. J. Numer. Methods Fluids
,
83
(
7
), pp.
583
605
.
23.
Li
,
J.
,
Jiang
,
Y.
,
Yu
,
S.
, and
Zhou
,
F.
,
2015
, “
Cooling Effect of Water Injection on a High-Temperature Supersonic Jet
,”
Energies
,
8
(
11
), pp.
13194
13210
.
24.
Sun
,
D.
,
Xu
,
J.
, and
Chen
,
Q.
,
2014
, “
Modeling of the Evaporation and Condensation Phase-Change Problems With FLUENT
,”
Numer. Heat Transfer, Part B
,
66
(
4
), pp.
326
342
.
25.
Wu
,
H. L.
,
Peng
,
X. F.
,
Ye
,
P.
, and
Gong
,
E. Y.
,
2007
, “
Simulation of Refrigerant Flow Boiling in Serpentine Tubes
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
1186
1195
.
26.
Lubomír
,
B.
,
Yohei
,
S.
, and
Andreas
,
P.
,
2021
, “
Piecewise Linear Interface-Capturing Volume-of-Fluid Method in Axisymmetric Cylindrical Coordinates
,”
J. Comput. Phys.
,
436
(
1
), p.
110291
. pp. 1–36.
27.
Giordano
,
D.
, and
De Serio
,
M.
,
2002
, “
Thermodynamic Model of Hydrazine That Accounts for Liquid-Vapor Phase Change
,”
J. Thermophys. Heat Transfer
,
16
(
2
), pp.
261
272
.
28.
Allen
,
R. D.
,
1963
, “
Thermal Conductivity of Gaseous Unsymmetrical Dimethylhydrazine
,”
AIAA J.
,
1
(
7
), pp.
1689
1691
.
29.
Arnold
,
S.
,
1999
, “
Physical & Thermodynamic Properties of Hypergolic Propellants: A Review and Update
,”
Proceedings in JANNAF Inter-Agency Propulsion Committee PD & CS and S & EPS
,
San Diego, CA
,
Jan. 1999
, pp.
301
310
.
30.
Navaneethan
,
M.
,
Sundararajan
,
T.
,
Srinivasan
,
K.
, and
Jayachandran
,
T.
,
2023
, “
Compressible Multiphase Flow Modelling and Experimental Validation of Film Cooling Effectiveness for a Rocket Thrust Chamber With Ablative Nozzle
,”
Proceedings of the 27th National and Fifth International ISHMT-ASTFE Heat and Mass Transfer Conference
,
IIT Patna, Bihar, India
,
Dec. 14–17
, pp.
373
378
.
31.
Leckner
,
B.
,
1972
, “
Spectral and Total Emissivity of Water Vapor and Carbon Dioxide
,”
Combust. Flame
,
19
(
1
), pp.
33
48
.
32.
Kays
,
W. M.
, and
Crawford
,
M. E.
,
1993
,
Convective Heat and Mass Transfer
,
McGraw–Hill
,
New York
.
33.
Inoue
,
T.
,
Inoue
,
C.
,
Fujii
,
G.
, and
Daimon
,
Y.
,
2022
, “
Evaporation of Three-Dimensional Wavy Liquid Film Entrained by Turbulent Gas Flow
,”
AIAA J.
,
60
(
5
), pp.
3805
3812
.
34.
Back
,
L. H.
,
Massier
,
P. F.
, and
Gier
,
H. L.
,
1964
, “
Convective Heat Transfer in a Convergent-Divergent Nozzle
,”
Int. J. Heat Mass Transfer
,
7
(
5
), pp.
549
568
.
35.
Thakre
,
P.
,
2008
, “
Chemical Erosion of Graphite and Refractory Metal Nozzles and its Mitigation in Solid-Propellant Motors
,” Ph.D. dissertation,
The Pennsylvania State University
,
State College, PA
.
36.
Amar
,
A. J.
,
Blackwell
,
B. F.
, and
Edwards
,
J. R.
,
2008
, “
One-Dimensional Ablation Using a Full Newton’s Method and Finite Control Volume Procedure
,”
J. Thermophys. Heat Transfer
,
22
(
1
), pp.
71
82
.
37.
Morrell
,
G.
,
1951
, “
Investigation of Internal Film Cooling of a 1000-Pound Thrust Liquid Ammonia Liquid Oxygen Rocket
,” NACA Report No. NACA-RM-E51E04.
You do not currently have access to this content.