The campaign life of an iron blast furnace depends on hearth wear. Distributions of liquid iron flow and refractory temperatures have a significant influence on hearth wear. A 3D comprehensive computational fluid dynamics model has been developed specifically for simulating the blast furnace hearth. It includes both the hot metal flow and the conjugate heat transfer through the refractories. The model has been extensively validated using measurement data from Mittal Steel old, new IH7 blast furnace and U.S. Steel 13 blast furnace. Good agreements between measured and calculated refractory temperature profiles have been achieved. It has been used to analyze the velocity and temperature distributions and wear patterns of different furnaces and operating conditions. The results can be used to predict the inner profile of hearth and to provide guidance for protecting the hearth.

1.
Stothart
,
D. W.
,
Chaykowski
,
R. D.
,
Donaldson
,
R. J.
, and
Pomeroy
,
D. H.
, 1997, “
Hearth Monitoring Experiences at Dofasco’s No. 4 Blast Furnace
,”
Ironmaking Conference Proceedings
,
ISS
, Vol.
56
, pp.
311
319
.
2.
Panjkovic
,
V.
,
Truelove
,
J. S.
, and
Zulli
,
P.
, 2002, “
Numerical Modelling of Iron Flow and Heat Transfer in Blast Furnace Hearth
,”
Ironmaking Steelmaking
0301-9233,
29
, pp.
390
400
.
3.
Yoshikawa
,
F.
, and
Szekely
,
J.
, 1981, “
Mechanism of Blast Furnace Hearth Erosion
,”
Ironmaking Steelmaking
0301-9233,
8
, pp.
159
168
.
4.
Preuer
,
A.
,
Winter
,
J.
, and
Hiebler
,
H.
, 1992, “
Computation of the Erosion in the Hearth of a Blast Furnace
,”
Steel Res.
0177-4832,
63
(
4
), pp.
147
151
.
5.
Kurita
,
K.
, and
Ogawa
,
A.
, 1994, “
Science and Technology of Ironmaking
,”
Proceedings of the First International Congress
, Iron and Steel Institute of Japan, Sendai, Japan, Vol.
284
.
6.
Kowalski
,
W.
,
Bachhofen
,
H. H.
,
Ruther
,
H. P.
,
Rodl
,
S.
,
Marx
,
K.
, and
Thiemann
,
T.
, 1998, “
Investigation on Tapping Strategies at the Blast Furnace With Special Regard to the State of the Hearth
,”
Proceedings of the ICSTI/Ironmaking Conference
, Toronto, Canada, pp.
595
605
.
7.
Vats
,
A.
, and
Dash
,
S. K.
, 2000, “
Flow Induced Stress Distribution on Wall of Blast Furnace Hearth
,”
Ironmaking Steelmaking
0301-9233,
27
(
2
), pp.
123
128
.
8.
Tachimori
,
M.
, 1984, “
Flow of Iron in Blast Furnace Hearth
,”
Tetsu to Hagane
0021-1575,
70
, pp.
2224
2231
.
9.
Ohno
,
J.
,
Tachimori
,
M.
,
Nakamura
,
M.
, and
Hara
,
Y.
, 1985, “
Influence of Hot Metal Flow on the Heat Transfer in a Blast Furnace Hearth
,”
Tetsu to Hagane
0021-1575,
71
, pp.
34
40
.
10.
Shibata
,
K.
,
Kimura
,
Y.
,
Shimizu
,
M.
, and
Inaba
,
S.
, 1990, “
Dynamics of Dead-Man Coke and Hot Metal Flow in a Blast-Furnace Hearth
,”
ISIJ Int.
0915-1559,
30
, pp.
208
215
.
11.
Venturini
,
M. J.
,
Bolsigner
,
J. P.
,
Iezzi
,
J.
, and
Sert
,
D.
, 1998, “
Computations and Measurements of Liquids Flow in the Hearth of the Blast Furnace
,”
Proceedings of the ICSTI/Ironmaking Conference
, Toronto, Canada, pp.
615
622
.
12.
Tomita
,
Y.
, and
Tanaka
,
K.
, 1994, “
Development of the 3-Dimensional Numerical Model to Estimate Hot Metal Flow and Heat Transfer Behavior at the Blast Furnace Hearth
,”
First International Congress of Science and Technology of Ironmaking
, pp.
290
298
.
13.
Cheng
,
W. T.
, and
Huang
,
C. N.
, 2005, “
Three Dimensional Iron Flow and Heat Transfer in the Hearth of a Blast Furnace During Tapping Process
,”
Chem. Eng. Sci.
0009-2509,
60
, pp.
4485
4492
.
14.
Kowalski
,
W.
,
Bachhofen
,
H. J.
, and
Ruther
,
H. P.
, 1998, “
Investigation on Tapping Strategies at the Blast Furnace With Special Regard to the State of the Hearth
,”
1998 ICSTI/Ironmaking Conference Proceedings
,
ISS
, Vol.
57
, pp.
595
605
.
15.
Yan
,
F.
,
Zhou
,
C. Q.
,
Huang
,
D.
,
Chaubal
,
P.
, and
Zhao
,
Y.
, 2005, “3-D Computational Modeling of a Blast Furnace Hearth,” Iron & Steel Technology, 2(1), pp. 48–58.
16.
Zhou
,
C. Q.
,
Yan
,
F.
,
Patnala
,
K. A.
,
Roldan
,
D.
,
Huang
,
D.
,
Chaubal
,
P.
, and
Zhao
,
Y.
, 2004, “
Numerical Investigation of Parametric Effects on a Blast Furnace Hearth
,”
AIST 2004
, Nashville, TN, Sep. 15–17, pp.
77
87
.
17.
Zhou
,
C. Q.
,
Yan
,
F.
,
Roldan
,
D.
,
Patnala
,
K. A.
,
Huang
,
D.
,
Chaubal
,
P.
, and
Zhao
,
Y.
, 2005, “
Evaluation of Internal Conditions In a Blast Furnace Hearth Using A 3-D Steady State CFD Model
,”
AISTech 2005 Iron and Steel Technology Conference and Exposition
, Charlotte, NC, May 9–12.
18.
Huang
,
D.
,
Milovac
,
P.
,
Chaubal
,
P.
, and
Zhou
,
C. Q.
, 2005, “
Numerical Investigation of Transient Hot Metal Flows in a Blast Furnace Hearth
,”
AISTech 2005 Iron and Steel Technology Conference and Exposition
, Charlotte, NC, May 9–12.
19.
Ergun
,
S.
, 1953, “
Pressure Drop in Blast Furnace and in Cupola
,”
Ind. Eng. Chem.
0019-7866,
45
(
2
), pp.
477
485
.
20.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2002,
Introduction to Heat Transfer
, 4th ed.,
Wiley
,
New York
.
21.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, D.C.
22.
Chang
,
S. L.
, and
Zhou
,
C. Q.
, 2003, “
Simulation of FCC Riser Flow With Multiphase Heat Transfer and Cracking Reactions
,”
Comput. Mech.
0178-7675,
31
, pp.
519
532
.
23.
Nnanna
,
A. G.
,
Uludogan
,
A.
,
Roldan
,
D.
, and
Zhou
,
C. Q.
, 2004, “
Water Model of a Blast Furnace Hearth for Flow Pattern Investigation
,”
AISTech 2004 Proceedings
, Vol.
1
, pp.
35
45
.
24.
Tripathi
,
M. S.
, 2004, “
Evaluation of Flow Patterns in a Blast Furnace Hearth, Using Laser Based Diagnostics Applied to a Water-Model Vessel
,” MS thesis, Purdue University, W. Lafayette, IN.
25.
Huang
,
D.
,
Chaubal
,
P.
,
Abramowitz
,
H.
, and
Zhou
,
C.
, 2005, “
Hearth Skulls and Hearth Wear Investigation of ISPAT Inland’s #7 Blast Furnace
,”
AISTech 2005 Iron and Steel Technology Conference and Exposition
, Charlotte, NC, May 9–12.
26.
Bobek
,
J.
,
Huang
,
D.
,
Chaubal
,
P.
, and
Carter
,
W.
, 2005, “
Hearth Wear and Bottom Skulls of ISPAT Inland’s #7 Blast Furnace
,”
AIST
, Nashville, TN, Sep. 15–17, Vol.
1
, pp.
23
34
.
You do not currently have access to this content.