This paper presents new experimental flow boiling pressure drop results in a microscale tube. The experimental data were obtained under diabatic conditions in a horizontal smooth tube with an internal diameter of 2.32 mm. Experiments were performed with R134a as working fluid, mass velocities ranging from 100kg/m2s to 600kg/m2s, heat flux ranging from 10kW/m2 to 55kW/m2, saturation temperatures of 31°C, and exit vapor qualities from 0.20 to 0.99. Flow pattern characterization was also performed from images obtained by high-speed filming. Pressure drop gradients up to 48 kPa/m were measured. These data were carefully analyzed and compared against 13 two-phase frictional pressure drop prediction methods, including both macro- and microscale methods. Comparisons against these methods based on the data segregated according to flow patterns were also performed. Overall, the method by Cioncolini et al. (2009, “Unified Macro-to-Microscale Method to Predict Two-Phase Frictional Pressure Drops of Annular Flows,” Int. J. Multiphase Flow, 35, pp. 1138–1148) provided quite accurate predictions of the present database.

1.
Lowdermilk
,
W.
,
Lanzo
,
C.
, and
Siegel
,
L.
, 1958, “
Investigation of Boiling Burnout and Flow Stability for Water Flowing in Tubes
,” NACA TN 4382.
2.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
, 2003, “
Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
0145-7632,
24
, pp.
3
17
.
3.
Felcar
,
H. O.
, and
Ribatski
,
G.
, 2008, “
Avaliação de métodos preditivos para perda de carga durante o escoamento bifásico e a ebulição convectiva em micro-canais
,”
Proceedings of the First Brazilian Meeting on Boiling, Condensation and Multiphase Flow
, Florianópolis, Brazil, Paper No. MF-104.
4.
Cicchitti
,
A.
,
Lombardi
,
C.
,
Silvestri
,
M.
,
Soldaini
,
G.
, and
Zavattarelli
,
R.
, 1960, “
Two-Phase Cooling Experiments—Pressure Drop, Heat Transfer and Burnout Experiments
,”
Energia Nucleare
,
7
, pp.
407
425
.
5.
Consolini
,
L.
, 2008, “
Convective Boiling Heat Transfer in a Single Micro-Channel
,” Ph.D. thesis, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland.
6.
Ribatski
,
G.
,
Zhang
,
W.
,
Consolini
,
L.
,
Xu
,
J.
, and
Thome
,
J. R.
, 2007, “
On the Prediction of Heat Transfer in Micro-Scale Flow Boiling
,”
Heat Transfer Eng.
0145-7632,
28
, pp.
842
851
.
7.
Ong
,
C. L.
, and
Thome
,
J. R.
, 2011, “
Macro-to-Microchannel Transition in Two-Phase Flow: Part 1—Two-Phase Flow Patterns and Film Thickness Measurements
,”
Exp. Therm. Fluid Sci.
0894-1777,
35
, pp.
37
47
.
8.
Arcanjo
,
A. A.
,
Tibiriçá
,
C. B.
, and
Ribatski
,
G.
, 2010, “
Evaluation of Flow Patterns and Elongated Bubble Characteristics During the Flow Boiling of Halocarbon Refrigerants in a Micro-Scale Channel
,”
Exp. Therm. Fluid Sci.
0894-1777,
34
, pp.
766
775
.
9.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
, 2005, “
Explosive Boiling of Water in Parallel Micro-Channels
,”
Int. J. Multiphase Flow
0301-9322,
31
, pp.
371
392
.
10.
Boure
,
J. A.
,
Bergles
,
A. E.
, and
Tong
,
L. S.
, 1973, “
Review of Two-Phase Flow Instability
,”
Nucl. Eng. Des.
0029-5493,
25
, pp.
165
192
.
11.
Consolini
,
L.
,
Ribatski
,
G.
,
Wei
,
Z.
,
Xu
,
J.
, and
Thome
,
J. R.
, 2007, “
Heat Transfer in Confined Forced Flow-Boiling
,”
Heat Transfer Eng.
0145-7632,
28
, pp.
826
833
.
12.
Tibiriçá
,
C. T.
,
Ribatski
,
G.
, 2010, “
Flow Boiling Heat Transfer of R134a and R245fa in a 2.3mm Tube
,”
Int. J. Heat Mass Transfer
0017-9310,
53
, pp.
2459
2468
.
13.
Abernethy
,
R. B.
, and
Thompson
,
J. W.
, 1973,
Handbook Uncertainty in Gas Turbine Measurements
,
Arnold Engineering Development Center
,
Arnold Air Force Station, TN
.
14.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
, pp.
3
17
.
15.
Tibiriçá
,
C. B.
, and
Ribatski
,
G.
, “
Two-Phase Frictional Pressure Drop and Flow Boiling Heat Transfer for R245fa in a 2.3 mm Tube
,”
Heat Transfer Eng.
0145-7632, in press.
16.
Petukhov
,
B. S.
, 1970,
Advances in Heat Transfer
, Vol.
6
,
T. F.
Irvine
and
J. P.
Hartnett
, eds.,
Academic
,
New York
.
17.
Klein
,
S. A.
, 2007, Engineering Equation Solver (EES), Academic Version.
18.
Bandarra Filho
,
E. P.
,
Jabardo
,
J. M. S.
, and
Barbieri
,
P. E. L.
, 2004, “
Convective Boiling Pressure Drop of Refrigerant R-134a in Horizontal Smooth and Microfin Tubes
,”
Int. J. Refrig.
0140-7007,
27
(
8
), pp.
895
903
.
19.
Quibén
,
J. M.
,
Lima
,
R. J. S.
, and
Thome
,
J. R.
, 2007, “
Flow Pattern Based Two-Phase Frictional Pressure Drop Model for Horizontal Tubes. Part I: Diabatic and Adiabatic Experimental Study
,”
Int. J. Heat Fluid Flow
0142-727X,
28
(
5
), pp.
1049
1059
.
20.
Owens
,
W. L.
, 1961, “
Two-Phase Pressure Gradient
,”
International Development in Heat Transfer
, Pt. II,
ASME
,
New York
.
21.
Cioncolini
,
A.
,
Thome
,
J. R.
, and
Lombardi
,
C.
, 2009, “
Unified Macro-to-Microscale Method to Predict Two-Phase Frictional Pressure Drops of Annular Flows
,”
Int. J. Multiphase Flow
0301-9322,
35
, pp.
1138
1148
.
22.
Beattie
,
D. R. H.
, and
Whalley
,
P. B.
, 1982, “
A Simplified Two-Phase Frictional Pressure Drop Prediction Method
,”
Int. J. Multiphase Flow
0301-9322,
8
, pp.
83
87
.
23.
García
,
F.
,
García
,
R.
,
Padrino
,
J. C.
,
Mata
,
C.
,
Trallero
,
J. L.
, and
Joseph
,
D. D.
, 2003, “
Power Law Composite Power Law Friction Factor Correlations for Laminar Turbulent Gas–Liquid Flow in Horizontal Pipelines
,”
Int. J. Multiphase Flow
0301-9322,
29
(
10
), pp.
1605
1624
.
24.
Davidson
,
P. H.
,
Hardie
,
C. G.
,
Humphreys
,
R.
,
Markson
,
A. A.
,
Mumford
,
A. R.
, and
Ravese
,
T.
, 1943, “
Studies of Heat Transmission Through Boiler Tubing at Pressures From 500 to 3300 Pounds
,”
Trans. ASME
0097-6822,
65
, pp.
553
591
.
25.
McAdams
,
W. H.
,
Woods
,
W. K.
, and
Bryan
,
R. L.
, 1942, “
Vaporisation Inside Horizontal Tubes—II—Benzene–Oil Mixtures
,”
ASME J. Heat Transfer
0022-1481,
64
, pp.
193
200
.
26.
Dukler
,
A. E.
,
Wicks
,
M.
, and
Cleveland
,
R. G.
, 1964, “
Pressure Drop and Hold-Up in Two-Phase Flow. Part A—A Comparison of Existing Correlation, Part B—An Approach Through Similarity Analysis
,”
AIChE J.
0001-1541,
10
, pp.
38
43
.
27.
Müller-Steinhagen
,
H.
, and
Heck
,
K.
, 1986, “
A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes
,”
Chem. Eng. Process.
0255-2701,
20
, pp.
297
308
.
28.
Lockhart
,
R. W.
, and
Martinelli
,
R. C.
, 1949, “
Proposed Correlation of Data for Isothermal Two-Phase, Two-Component Flow in Pipes
,”
Chem. Eng. Prog.
0360-7275,
45
, pp.
39
48
.
29.
Chisholm
,
D.
, 1973, “
Pressure Drop Due to Friction During the Flow of Evaporating Two-Phase Mixtures in Smooth Tubes and Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
16
, pp.
347
358
.
30.
Sun
,
L.
, and
Mishima
,
K.
, 2009, “
Evaluation Analysis of Prediction Methods for Two-Phase Flow Pressure Drop in Mini-Channels
,”
Int. J. Multiphase Flow
0301-9322,
35
, pp.
47
54
.
31.
Mishima
,
K.
, and
Hibiki
,
T.
, 1996, “
Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes
,”
Int. J. Multiphase Flow
0301-9322,
22
, pp.
703
712
.
32.
Ribatski
,
G.
,
Wojtan
,
L.
, and
Thome
,
J. R.
, 2006, “
An Analysis of Experimental Data and Prediction Methods for Two-Phase Frictional Pressure Drop and Flow Boiling Heat Transfer in Micro-Scale Channels
,”
Exp. Therm. Fluid Sci.
0894-1777,
31
, pp.
1
19
.
33.
Kew
,
P.
, and
Cornwell
,
K.
, 1997, “
Correlations for Prediction of Boiling Heat Transfer in Small Diameter Channels
,”
Appl. Therm. Eng.
1359-4311,
17
, pp.
705
715
.
34.
Brauner
,
N.
, and
Ullmann
,
A.
, 2006, “
The Prediction of Flow Pattern Maps in Mini Channels
,”
44th European Two-Phase Flow Group Meeting
, EPFL, Lausanne.
35.
Celata
,
G. P.
, 2008, “
Single- and Two-Phase Flow Heat Transfer in Micropipes
,”
Fifth European Thermal-Sciences Conference
, Eindhoven, The Netherlands.
You do not currently have access to this content.