The present computational fluid dynamics (CFD) study was performed to investigate the 3D turbulent flow and heat transfer of coiled tube-in-tube heat exchangers (CTITHEs). The realizable k-ε model with enhanced wall treatment was used to simulate the turbulent flow and heat transfer in the heat exchangers. Temperature dependent thermophysical properties of water were used and heat exchangers are analyzed considering conjugate heat transfer from hot fluid in the inner-coiled tube to cold fluid in the annulus region. After simulations, Taguchi method was used for finding the optimum condition for some design parameters in the range of coil diameter from 0.18 to 0.3 m, tube and annulus flow rates from 2 to 4 and 10 to 20 LPM, respectively. Results show that the Gnielinski correlation used extensively for predicting Nusselt number for turbulent flow in ducts can be used to predict Nusselt number for both inner-coiled tube and annular coiled tube using the friction factor correlation for helical tubes of Mishra and Gupta. Contribution ratio obtained by Taguchi method shows that annulus side flow rate, tube side flow rate, coil diameter, and flow configuration are the most important design parameters in coiled tube-in-tube heat exchangers, respectively.

References

1.
Yao
,
L. S.
, and
Berger
,
S. A.
,
1978
, “
Flow in Heated Curved Pipes
,”
J. Fluid Mech
,
88
, pp.
339
354
.10.1017/S0022112078002141
2.
Vashisth
,
S.
,
Kumar
,
V.
, and
Nigam
,
K. D. P.
,
2008
, “
A Review on the Potential Applications of Curved Geometries in Process Industry
,”
Ind. Eng. Chem. Res.
,
47
, pp.
3291
3337
.10.1021/ie701760h
3.
Naphon
,
P.
, and
Wongwises
,
S.
,
2006
, “
A Review of Flow and Heat Transfer Characteristics in Curved Tubes
,”
Renewable Sustainable Energy Rev.
,
10
, pp.
463
490
.10.1016/j.rser.2004.09.014
4.
Garimella
,
S.
,
Richards
,
D. E.
, and
Chirstensen
,
R. N.
,
1988
, “
Experimental Investigation of Heat Transfer in Coiled Annular Ducts
,”
ASME J. Heat Transfer
,
110
, pp.
329
336
.10.1115/1.3250488
5.
Karahalios
,
G. T.
, and
Panagopoulos
,
A. A.
,
1989
, “
Oscillatory Flow in a Curved Annular Pipe
,”
Phys. Fluids A
,
1
, pp.
1104
1111
.10.1063/1.857334
6.
Petrakis
,
M. A.
, and
Karahalios
,
G. T.
,
1996
, “
Technical Note: Steady Flow in a Curved Pipe With a Coaxial Core
,”
Int. J. Numer. Methods Fluids
,
22
, pp.
1231
1237
.10.1002/(SICI)1097-0363(19960630)22:12<1231::AID-FLD395>3.0.CO;2-F
7.
Robertson
,
A. M.
, and
Muller
,
S. J.
,
1996
, “
Flow of Oldroyd-B Fluids in Curved Pipes of Circular and Annular Cross-Section
,”
Int. J. Non-Linear Mech.
,
31
, pp.
l
20
.10.1016/0020-7462(95)00040-2
8.
Petrakis
,
M. A.
, and
Karahalios
,
G. T.
,
1997
, “
Exponential-Decaying Flow in a Gently Curved Annular Pipe
,”
Int. J. Non-Linear Mech.
,
32
, pp.
823
835
.10.1016/S0020-7462(96)00099-6
9.
Xin
,
R. C.
,
Awwad
,
A.
,
Dong
,
Z. F.
, and
Ebadian
,
M. A.
,
1997
, “
An Experimental Study of Single-Phase and Two-Phase Flow Pressure Drop in Annular Helicoidal Pipes
,”
Int. J. Heat Fluid Flow
,
18
, pp.
482
488
.
10.
Petrakis
,
M. A.
, and
Karahalios
,
G. T.
,
1999
, “
Fluid Flow Behavior in a Curved Annular Conduit
,”
Int. J. Non-Linear Mech.
,
34
, pp.
13
35
.10.1016/S0020-7462(97)00070-X
11.
Rennie
,
T. J.
, and
Raghavan
,
V. G. S.
,
2005
, “
Experimental Studies of a Double Pipe Helical Heat Exchanger
,”
Exp. Therm. Fluid Sci.
,
29
, pp.
919
924
.10.1016/j.expthermflusci.2005.02.001
12.
Rennie
,
T. J.
, and
Raghavan
,
V. G. S.
,
2006
, “
Numerical Studies of a Doublepipe Helical Heat Exchanger
,”
Appl. Therm. Eng.
,
26
, pp.
1266
1273
.10.1016/j.applthermaleng.2005.10.030
13.
Kumar
,
V.
,
Saini
,
S.
,
Sharma
,
M.
, and
Nigam
,
K. D. P.
,
2006
, “
Pressure Drop and Heat Transfer Study in Tube in Tube Heat Exchanger
,”
Chem. Eng. Sci.
,
61
, pp.
4403
4416
.10.1016/j.ces.2006.01.039
14.
Kumar
,
V.
,
Faizee
,
B.
,
Mridha
,
M.
, and
Nigam
,
K. D. P.
,
2008
, “
Numerical Studies of a Tube in Tube Helically Coiled Heat Exchanger
,”
Chem. Eng. Process.
,
47
, pp.
2287
2295
.10.1016/j.cep.2008.01.001
15.
Mandal
,
M. M.
, and
Nigam
,
K. D. P.
,
2009
, “
Experimental Study on Pressure Drop and Heat Transfer of Turbulent Flow in Tube in Tube Helical Heat Exchanger
,”
Ind. Eng. Chem. Res.
,
48
, pp.
9318
9324
.10.1021/ie9002393
16.
Wu
,
S.
,
Chen
,
S.
,
Xiao
,
L.
, and
Li
,
Y.
,
2011
, “
Numerical Investigation on Developing Laminar Forced Convective Heat Transfer and Entropy Generation in an Annular Helicoidal Tube
,”
J. Mech Sci. Technol.
,
25
, pp.
1439
1447
.10.1007/s12206-011-0403-2
17.
Gomaa
,
A.
,
Aly
,
W. I. A.
,
Omara
,
M.
, and
Abdelmagied
,
M.
,
2012
, “
Heat Transfer and Pressure Drop Characteristics in a Double Helically Coiled Tube
,”
Eng. Res. J.
,
136
, pp.
M15
M38
.
18.
Shih
,
T.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
, pp.
227
238
.10.1016/0045-7930(94)00032-T
19.
Jayakumar
,
J. S.
,
Mahajani
,
S. M.
,
Mandal
,
J. C.
,
Iyer
,
K.
, and
Vijayan
,
P. K.
,
2010
, “
CFD Analysis of Single-Phase Flows Inside Helically Coiled Tubes
,”
Comput. Chem. Eng.
,
34
, pp.
430
446
.10.1016/j.compchemeng.2009.11.008
20.
Anonymous
,
2011
, “
ansys fluent Theory Guide
,” Release 14.0, ANSYS, Inc., Canonsburg.
21.
Ranade
,
V. V.
,
2002
,
Computational Flow Modeling for Chemical Reaction Engineering
,
Academic Press
,
London
, Chap. 3.
22.
Wolfstein
,
M.
,
1969
, “
The Velocity and Temperature Distribution of One-Dimensional Flow With Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
,
12
, pp.
301
318
.10.1016/0017-9310(69)90012-X
23.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
, pp.
301
314
.10.1016/0017-9310(72)90076-2
24.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington, DC
.
25.
Xin
,
R. C.
, and
Ebadian
,
M. A.
,
1997
, “
The Effects of Prandtl Numbers on Local and Average Convective Heat Transfer Characteristic in Helical Pipes
,”
ASME J. Heat Transfer
,
119
, pp.
467
473
.10.1115/1.2824120
26.
Aly
,
W. I. A.
,
Inaba
,
H.
,
Haruki
,
N.
, and
Horibe
,
A.
,
2006
, “
Drag and Heat Transfer Reduction Phenomena of Drag-Reducing Surfactant Solutions in Straight and Helical Pipes
,”
ASME J. Heat Transfer
,
128
, pp.
800
810
.10.1115/1.2217751
27.
Taguchi
,
G.
,
1987
,
Taguchi Techniques for Quality Engineering
,
Quality Resources
,
New York
.
28.
Bilen
,
K.
,
Yapici
,
J.
, and
Celik
,
C.
,
2001
, “
A Taguchi Approach for Investigation of Heat Transfer From a Surface Equipped With Rectangular Blocks
,”
Energy Convers. Manage.
,
42
, pp.
951
961
.10.1016/S0196-8904(00)00118-7
29.
Yun
,
J. Y.
, and
Lee
,
K. S.
,
2000
, “
Infuence of Design Parameters on the Heat Transfer and Flow Friction Characteristics of the Heat Exchanger With Slit
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2529
2539
.10.1016/S0017-9310(99)00342-7
30.
Gunes
,
S.
,
Manay
,
E.
,
Senyigit
,
E.
, and
Ozceyhan
,
V.
,
2011
, “
A Taguchi Approach for Pptimization of Design Parameters in a Tube With Coiled Wire Inserts
,”
Appl. Therm. Eng.
,
31
, pp.
2568
2577
.10.1016/j.applthermaleng.2011.04.022
31.
Jamshidi
,
N.
,
Farhadi
,
M.
,
Sedighi
,
K.
, and
Ganji
,
D. D.
,
2012
, “
Optimization of Design Parameters for Nanofluids Flowing Inside Helical Coils
, “
Int. Commun. Heat Mass Transfer
,
39
, pp.
311
317
.10.1016/j.icheatmasstransfer.2011.11.013
32.
Jamshidi
,
N.
,
Farhadi
,
M.
,
Ganji
,
D. D.
, and
Sedighi
,
K.
,
2013
, “
Experimental Analysis of Heat Transfer Enhancement in Shell and Helical Tube Heat Exchangers
.”
Appl. Therm. Eng.
,
51
, pp.
644
652
.10.1016/j.applthermaleng.2012.10.008
33.
Mishra
,
P.
, and
Gupta
,
S. N.
,
1979
, “
Momentum Transfer in Curved Pipes: Newtonian Fuids
,”
Ind. Eng. Chem. Des. Dev.
,
18
, pp.
130
137
.10.1021/i260069a017
34.
White
,
C. M.
,
1932
, “
Friction Factor and Its Relation to Heat Transfer
,”
Trans. Inst. Chem. Eng.
,
18
, pp.
66
86
.
35.
Ito
,
H.
,
1959
, “
Friction Factors for Turbulent Flow in Curved Pipes
,”
J. Basic Eng.
,
81
, pp.
123
134
.
36.
Konakov
,
P. K.
,
1946
, “
A New Correlation for the Friction Coefficient in Smooth Tubes
,”
Berichte der Akademie der Wissenschaften der UdSSR. Band LI
,
51
, pp.
503
506
(VDI Heat Atlas, 2010, Springer, p. 696).
37.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
, pp.
359
368
.
38.
Gnielinski
,
V.
,
2009
, “
Heat Transfer Coefficients for Turbulent Flow in Concentric Annular Ducts
,”
Heat Transfer Eng.
,
30
, pp.
431
436
.10.1080/01457630802528661
39.
Gnielinski
,
V.
,
1986
, “
Heat Transfer and Pressure Drop in Helically Coiled Tubes
,”
Proceedings 8th International Heat Transfer Conference
,
San Francisco, Hemisphere, Washington DC
, Vol. 6, pp.
2847
2854
(VDI Heat Atlas, Springer, 2010, p. 696).
40.
Seban
,
R. A.
, and
McLaughlin
,
E. F.
,
1963
, “
Heat Transfer in Tube Coils With Laminar and Turbulent Flow
,”
Int. J. Heat Mass Transfer
,
6
, pp.
387
395
.10.1016/0017-9310(63)90100-5
41.
Mori
,
Y.
, and
Nakiyama
,
W.
,
1967
, “
Study on Forced Convective Heat Transfer in Curved Pipes: Part—III
,”
Int. J. Heat Mass Transfer
,
10
, pp.
681
695
.10.1016/0017-9310(67)90113-5
42.
Schmidt
,
E. F.
,
1967
, “
Wärmeübergang und Druckverlust in Rohrschlangen
,”
Chemie-Ingenieur - Technik
,
39
Jahrgang, Heft 13, pp.
781
789
.10.1002/cite.330391302
43.
Piazza
,
I.
, and
Ciofalo
,
M.
,
2009
, “
Numerical Prediction of Turbulent Flow and Heat Transfer in Helically Coiled Pipes
,”
Int. J. Therm. Sci.
,
49
, pp.
653
663
.10.1016/j.ijthermalsci.2009.10.001
44.
Pethukov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Adv. Heat Transfer
,
6
, pp.
1
69
.
You do not currently have access to this content.