Based on the double boundary layer theory, a generalized mathematical model was developed to study the distributions of gas film, liquid film, and heat transfer coefficient along the tube surface with different geometries and curvatures for film condensation in the presence of a noncondensable gas. The results show that: (i) for tubes with the same geometry, gas film thickness, and liquid film thickness near the top of the tube decrease with the increasing of curvature and the heat transfer rate increases with it. (ii) For tubes with different geometries, one need to take into account all factors to compare their overall heat transfer rate including gas film thickness, liquid film thickness and the separating area. Besides, the mechanism of the drainage and separation of gas film and liquid film was analyzed in detail. One can make a conclusion that for free convection, gas film never separate since parameter A is always positive, whereas liquid film can separate if parameter B becomes negative. The separating angle of liquid film decreases with the increasing of curvature.

References

1.
Yang
,
S. A.
, and
Hsu
,
C. H.
,
1997
, “
Free- and Forced-Convection Film Condensation From a Horizontal Elliptic Tube With a Vertical Plate and Horizontal Tube as Special Cases
,”
Int. J. Heat Fluid Flow
,
18
(6), pp.
567
574
.10.1016/S0142-727X(97)00025-8
2.
Memory
,
S. B.
,
Adams
,
V. H.
, and
Marto
,
P. J.
,
2009
, “
Free and Forced Convection Laminar Film Condensation on Horizontal Elliptical Tubes
,”
Int. J. Heat Mass Transfer
,
40
(14), pp.
3395
3406
.10.1016/S0017-9310(96)00374-2
3.
Chang
,
T. B.
, and
Yeh
,
W. Y.
,
2011
, “
Theoretical Investigation Into Condensation Heat Transfer on Horizontal Elliptical Tube in Stationary Saturated Vapor With Wall Suction
,”
Appl. Therm. Eng.
,
31
(5), pp.
946
953
.10.1016/j.applthermaleng.2010.11.018
4.
Li
,
H. J.
,
2009
, “
Experimental Study on the Performance of Condensation Heat Transfer With Drop-Shaped Tubes
,”
Proc. CSEE
,
29
, pp.
79
84
.
5.
Som
,
S. K.
, and
Chakraborty
,
S.
,
2006
, “
Film Condensation in Presence of Noncondensable Gases Over Horizontal Tubes With Progressively Increasing Radius of Curvature in the Direction of Gravity
,”
Int. J. Heat Mass Transfer
,
49
(3–4), pp.
594
600
.10.1016/j.ijheatmasstransfer.2005.09.001
6.
Mukhopadhyay
,
S.
,
Som
,
S. K.
, and
Chakraborty
,
S.
,
2007
, “
A Generalized Mathematical Description for Comparative Assessment of Various Horizontal Polar Tube Geometries With Regard to External Film Condensation in Presence of Noncondensable Gases
,”
Int. J. Heat Mass Transfer
,
50
(17–18), pp.
3437
3446
.10.1016/j.ijheatmasstransfer.2007.01.042
7.
Yang
,
S. M.
, and
Tao
,
W. Q.
,
2006
,
Heat Transfer
, 4th ed.,
Higher Education Press
,
Beijing, China
.
8.
Lee
,
K. Y.
, and
Kim
,
M. H.
,
2008
, “
Effect of an Interfacial Shear Stress on Steam Condensation in the Presence of a Noncondensable Gas in a Vertical Tube
,”
Int. J. Heat Mass Transfer
,
51
(21–22), pp.
5333
5343
.10.1016/j.ijheatmasstransfer.2008.03.017
9.
Rosa
,
J. C.
,
Herranz
,
L. E.
, and
Munoz-Cobo
,
J. L.
,
2009
, “
Analysis of the Suction Effect on the Mass Transfer When Using the Heat and Mass Transfer Analogy
,”
Nucl. Eng. Des.
,
239
(10), pp.
2042
2055
.10.1016/j.nucengdes.2009.06.003
10.
Hsu
,
C. H.
, and
Yang
,
S. A.
,
1999
, “
Pressure Gradient and Variable Wall Temperature Effects During Filmwise Condensation From Downward Flowing Vapors Onto a Horizontal Tube
,”
Int. J. Heat Mass Transfer
,
42
(13), pp.
2419
2426
.10.1016/S0017-9310(98)00314-7
11.
Tang
,
G. H.
,
Hu
,
H. W.
,
Zhuang
,
Z. N.
, and
Tao
,
W. Q.
,
2012
, “
Film Condensation Heat Transfer on a Horizontal Tube in Presence of a Noncondensable Gas
,”
Appl. Therm. Eng.
,
36
, pp.
414
425
.10.1016/j.applthermaleng.2011.10.058
You do not currently have access to this content.