Two-phase thermosyphons with condensers from roll-bonded panels, short “roll-bond thermosiphons,” are attractive for power-electronics cooling. Using simulations, the performance of roll-bond thermosyphons and classical heat sinks is compared. The roll-bond thermosyphons are advantageous in terms of trade-off between thermal resistance, cooler volume or mass, and sound-power level. Under forced convection, where air-side heat-transfer coefficients are comparatively high, the classical heat sink suffers from low fin efficiency and limited heat spreading. By increasing the number of panels, the roll-bond thermosyphon enables low thermal resistances that cannot be practically reached with classical heat sinks. For free air convection, the roll-bond thermosyphon allows a significant reduction of thermal resistance and cooler mass.

References

1.
Mudawar
,
2000
, “
Assessment of High-Heat Flux Thermal Management Schemes
,”
InterSociety Conference on Thermal Phenomena
,
IEEE
, Las Vegas, NV, May 23–26.
2.
Ebadian
,
M. A.
, and
Lin
,
C. X.
,
2011
, “
A Review of High-Heat-Flux Heat Removal Technologies
,”
ASME J. Heat Transfer
,
133
(
11
), p.
110801
.10.1115/1.4004340
3.
Zhang
,
Y. P.
,
Yu
,
X. L.
,
Feng
,
Q. K.
, and
Zhang
,
L. H.
,
2009
, “
Vapor Chamber Acting as a Heat Spreader for Power Module Cooling
,”
J. Therm. Sci. Eng. Appl.
,
1
(
2
), p.
021003
.10.1115/1.4000285
4.
Howes
,
J. C.
,
Levett
,
D. B.
,
Wilson
,
S. T.
,
Marsala
,
J.
, and
Saums
,
D. L.
,
2008
, “
Cooling of an IGBT Drive System With Vaporizable Dielectric Fluid (VDF)
,”
24th IEEE SEMI-THERM Symposium
, San Jose, CA, Mar. 16–20, pp.
9
12
.
5.
Perpina
,
X.
,
Garonne
,
O.
,
Rochet
,
J.-P.
,
Jalby
,
P.
,
Mermet-Guyennet
,
M.
, and
Rebollo
,
J.
,
2007
, “
Experimental Analysis of Temperature Distribution Within Traction IGBT Modules
,”
Conference on Power Electronics Applications
,
Aalborg
, Denmark, Sept. 2–5.
6.
Kang
,
S.
,
2012
, “
Advanced Cooling for Power Electronics
,”
CIPS 2012—International Conference Integrated Power Electronics Systems
, Nuremberg, Germany, Mar. 6–8.
7.
Ng
,
C. Y. R.
,
Wong
,
Y. W.
,
Liu
,
C. Y.
, and
Choo
,
K. F.
,
1998
, “
Thermosyphon-Cooled Bellow Liquid Heat Sink
,”
IEEE/CPMT Electronics Packaging Technology Conference
, Singapore, Dec. 8–10, pp. 143–146.
8.
Pal
,
A.
,
Joshi
,
Y. K.
,
Beitelmal
,
M. H.
,
Patel
,
C. D.
, and
Wenger
,
T. M.
,
2002
, “
Design and Performance Evaluation of a Compact Thermosyphon
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
601
607
.10.1109/TCAPT.2002.807997
9.
Agostini
,
F.
,
Gradinger
,
T. B.
, and
de Falco
,
C.
,
2011
, “
Simulation Aided Design of a Two-Phase Thermosyphon for Power Electronics Cooling
,” IECON, Melbourne, Australia, Nov. 7–10, pp. 1560–1565.
10.
Agostini
,
F.
, and
Gradinger
,
T. B.
,
2012
, “
Roll-Bond Condenser in a Two-Phase Thermosyphon Loop for Power Electronics Cooling
,” Heat Transfer 2012, Split, Croatia, June 27–29.
11.
Agostini
,
F.
, and
Gradinger
,
T. B.
,
2013
, “
Two-Phase Roll-Bond Heat Sink for Power-Electronics Cooling
,” PCIM 2013, Nürnberg, Germany, May 14–16, pp. 171–178.
12.
Hermes
,
C. J. L.
,
Melo
,
C.
, and
Negrao
,
C. O. R.
,
2007
, “
A Numerical Simulation Model for Plate-Type, Roll-Bond Evaporators
,”
Int. J. Refrig.
,
31
(
2
), pp.
335
347
.10.1016/j.ijrefrig.2007.05.005
13.
Sun
,
X.
,
Wu
,
J.
,
Dai
,
Y.
, and
Wang
,
R.
,
2014
, “
Experimental Study on Roll-Bond Collector/Evaporator With Optimized Channel Used in Direct Expansion Solar Assisted Heat Pump Water Heating System
,”
Appl. Therm. Eng.
,
66
(
1–2
), pp.
571
579
.10.1016/j.applthermaleng.2014.02.060
14.
Del Col
,
D.
,
Padovan
,
A.
,
Bortolato
,
M.
,
Dai Pre
,
M.
, and
Zambolin
,
2013
, “
Thermal Performance of Flat Plate Solar Collectors With Sheet-and-Tube and Roll-Bond Absorbers
,”
Energy
,
58
(
1
), pp.
258
269
.10.1016/j.energy.2013.05.058
15.
Khandekar
,
S.
, and
Groll
,
M.
,
2004
, “
Pulsating Heat Pipes: Attractive Entrants in the Family of Closed Passive Two-Phase Systems
,”
J. Energy. Heat Mass Transfer
,
26
, pp. 99–115.
16.
ABB Data Sheet Doc. No. 5SYA 1407-03 04-2011, 5SNA 1500E330305, ABB HiPak™, IGBT Module.
17.
Bar-Cohen
,
A.
, and
Iyengar
,
M.
,
2002
, “
Design and Optimization of Air-Cooled Heat Sinks for Sustainable Development
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
584
591
.10.1109/TCAPT.2003.809112
18.
Culham
,
J. R.
, and
Muzychka
,
Yu. S.
,
2001
, “
Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
159
165
.10.1109/6144.926378
19.
Gradinger
,
T. B.
,
2013
, “
Air-Cooling Optimization at System Level
,”
EPE J.
,
23
(
2
), pp. 7–13.
20.
Gradinger
,
T. B.
, and
Liu
,
Y.
,
2010
, “
Fast and Accurate Simulation of Time-Variant Air-Cooling Systems
,” CIPS 2010, Nürnberg, Germany, Mar. 16–19.
21.
Carolus
,
T.
,
2009
,
Ventilatoren—Aerodynamischer Entwurf, Schallvorhersage, Konstruktion
, 2nd ed.,
Vieweg
+
Teubner
, Wiesbaden, Germany.
22.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2002
, “
Fundamentals of Heat and Mass Transfer
,” 5th ed.,
Wiley
, New York.
23.
Bhatti
,
M. S.
, and
Shah
,
R. K.
,
1987
, “
Turbulent and Transition Flow Convective Heat Transfer in Ducts
,”
Handbook of Single-Phase Convective Heat Transfer
,
S.
Kakac
,
R. K.
Shah
, and
W.
Aung
, eds.,
Wiley
, New York.
24.
Idelchik
,
I. E.
, ed.,
1994
,
Handbook of Hydraulic Resistance
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
25.
Shah
,
M. M.
,
1979
, “
A General Correlation for Heat Transfer During Film Condensation Inside Pipes
,”
Int. J. Heat Mass Transfer
,
22
(
4
), pp.
547
566
.10.1016/0017-9310(79)90058-9
You do not currently have access to this content.