A thermodynamic analysis of the two-phase physics involving a liquid–vapor combination has been studied under the regime of conjugate heat and mass transfer phenomena. An experiment has been designed and performed to estimate the interfacial mass transfer characteristics of a liquid–vapor system by varying the liquid temperature. The experimental setup consists of an instrumented tank partially filled with water and maintained at different temperatures. The evaporation of liquid from the interface and the gaseous condensation has been quantified by calculating the interfacial mass transfer rate for both covered and uncovered tanks. The dependence of interfacial mass transfer rate on the liquid–vapor interfacial temperature, fractional concentration of the evaporating liquid, the surface area of the liquid vapor interface, and the fill level of the liquid has been established through the present experimental study. An estimation of the overall mass transfer rate from the interface due to a concentration gradient shows an analogy with the multiphase heat transfer that takes place across the interface due to temperature gradient. It was seen that at low fill levels and with a temperature difference of about 30 °C between liquid and ullage, the mass transfer rate of a closed system was nearly doubled when compared to its open system counterpart.

References

1.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2007
,
Transport Phenomena
, 2nd ed.,
Wiley, New York
.
2.
Kobayashi
,
Y.
, and
Tsutsumi
,
T.
,
2000
, “
Heat Transfer Characteristic of the Spherical Tank Skirt of LNG and LH2 Having a Hybrid Construction
,”
Trans. West Jpn. Soc. Nav. Archit.
,
99
, pp.
395
402
.
3.
Bates
,
S.
, and
Morrison
,
D. S.
,
1997
, “
Modeling the Behavior of Stratified Liquid Natural Gas in Storage Tanks: A Study of the Rollover Phenomenon
,”
Int. J. Heat Mass Transfer
,
40
(
8
), pp.
1875
1884
.10.1016/S0017-9310(96)00218-9
4.
Chen
,
Q. S.
,
Wegrzyn
,
J.
, and
Prasad
,
V.
,
2004
, “
Analysis of Temperature and Pressure Changes in Liquefied Natural Gas (LNG) Cryogenic Tanks
,”
Cryogenics
,
44
(
10
), pp.
701
709
.10.1016/j.cryogenics.2004.03.020
5.
Boukeffa
,
D.
,
Boumaza
,
M.
,
Francois
,
M. X.
, and
Pellerin
,
S.
,
2001
, “
Experimental and Numerical Analysis of Heat Losses in a Liquid Nitrogen Cryostat
,”
Appl. Therm. Eng.
,
21
(
9
), pp.
967
975
.10.1016/S1359-4311(00)00098-3
6.
Khemis
,
O.
,
Boumaza
,
M.
,
Ali
,
A. M.
, and
Francois
,
M. X.
,
2003
, “
Experimental Analysis of Heat Transfers in a Cryogenic Tank Without Lateral Insulation
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2107
2117
.10.1016/S1359-4311(03)00164-9
7.
Gradon
,
L.
, and
Selecki
,
A.
,
1977
, “
Evaporation of a Liquid Drop Immersed in Another Immiscible Liquid. The Case of σc < σd
,”
Int. J. Heat Mass Transfer
,
20
(
5
), pp.
459
466
.10.1016/0017-9310(77)90092-8
8.
Raina
,
G. K.
, and
Wanchoo
,
R. K.
,
1984
, “
Direct Contact Heat Transfer With Phase Change: Theoretical Expression for Instantaneous Velocity of a Two-Phase Bubble
,”
Int. Commun. Heat Mass Transfer
,
11
(
3
), pp.
227
237
.10.1016/0735-1933(84)90039-3
9.
Raina
,
G. K.
, and
Grover
,
P. D.
,
1985
, “
Direct Contact Heat Transfer With Phase Change: Theoretical Model Incorporating Sloshing Effects
,”
AIChE J.
,
31
(
3
), pp.
507
510
.10.1002/aic.690310326
10.
Raina
,
G. K.
, and
Grover
,
P. D.
,
1988
, “
Direct Contact Heat Transfer With Change of Phase: Experimental Technique
,”
AIChE J.
,
34
(
8
), pp.
1376
1380
.10.1002/aic.690340817
11.
Fang
,
G.
, and
Ward
,
C. A.
,
1999
, “
Temperature Measured Close to the Interface of an Evaporating Liquid
,”
Phys. Rev.
,
59
, pp.
417
428
.
12.
Fedorov
,
V. I.
, and
Luk'yanova
,
E. A.
,
2000
, “
Filling and Storage of Cryogenic Propellant Components Cooled Below Boiling Point in Rocket Tanks at Atmospheric Pressure
,”
Chem. Pet. Eng.
,
36
(
9–10
), pp.
584
587
.10.1023/A:1002820311417
13.
Kozyrev
,
A. V.
, and
Sitnikov
,
A. G.
,
2001
, “
Evaporation of a Spherical Droplet in a Moderate Pressure Gas
,”
Phys. Usp.
,
44
(
7
), pp.
725
733
.10.1070/PU2001v044n07ABEH000953
14.
Scurlock
,
R.
,
2001
, “
Low Loss Dewars and Tanks: Liquid Evaporation Mechanisms and Instabilities
,”
Coldfacts
, pp.
7
18
.
15.
Krahl
,
R.
, and
Adamo
,
M.
,
2004
,
A Model for Two Phase Flow With Evaporation
,
Weierstrass-Institut for Angewandte Analysis and Stochastic
,
Berlin
, p.
899
.
16.
Lienhard
,
J. H.
, IV
, and
Lienhard
,
J. H.
, V
,
2005
,
Heat Transfer Text Book
,
Cambridge, MA
.
17.
Rakshit
,
D.
,
Narayanaswamy
,
R.
,
Truong
,
T.
, and
K. P.
Thiagarajan
,
2010
, “
An Experimental Study on the Interface Mass Transfer Governing Thermodynamics of Stored Liquids
,”
Proceedings of the 20th National and 9th International ISHMT-ASME Heat and Mass Transfer Conference
, Mumbai, India, Jan. 4–6.
18.
Parameswaram
,
M.
,
Baltes
,
H. P.
,
Brett
,
M. J.
,
Fraser
,
D. E.
, and
Robinson
,
A. M.
,
1988
, “
A Capacitive Humidity Sensor Based on CMOS Technology With Adsorbing Film
,”
Sens. Actuators
,
15
(
4
), pp.
325
335
.10.1016/0250-6874(88)81503-8
19.
Incropera
,
F. P.
,
Dewitt
,
D. P.
,
Bergmen
,
T. L.
, and
Lavine
,
A. S.
,
2005
,
Introduction to Heat Transfer
, 5th ed.,
Wiley, New York
.
20.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1989
,
Experimentation and Uncertainty Analysis for Engineers
, 2nd ed.,
Wiley, New York
.
21.
Balaji
,
C.
,
Hölling
,
M.
, and
Herwig
,
H.
,
2007
, “
Entropy Generation Minimization in Turbulent Mixed Convection Flows
,”
Int. Commun. Heat Mass Transfer
,
34
(
5
), pp.
544
552
.10.1016/j.icheatmasstransfer.2007.01.015
22.
Pioro
,
L.
,
1999
, “
Experimental Evaluation of Constants for the Rohsenow Pool Boiling Correlation
,”
Int. J. Heat Mass Transfer
,
42
(
11
), pp.
2003
2013
.10.1016/S0017-9310(98)00294-4
23.
Liley
,
P. E.
,
1984
,
Steam Tables in SI Units, private communication. School of Mechanical Engineering
,
Purdue University
,
West Lafayette, IN
.
24.
Rakshit
,
D.
,
Narayanaswamy
,
R.
, and
Thiagarajan
,
K. P.
,
2011
, “
Estimation of Entropy Generation due to Heat Transfer From a Liquid in an Enclosure
,”
ANZIAM J.
,
51
, pp.
852
873
.
25.
Isidoro
,
M. H.
, “
Mass Diffusivity Data by Polytechnic University of Madrid
,” webserver.dmt.upm.es/~isidoro/
26.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Cho
,
Y. I.
,
1988
,
Handbook of Heat Transfer
, 3rd ed.,
McGraw-Hill
,
New York
.
27.
Malyshev
,
V. V.
, and
Zlobin
,
E. P.
,
1972
, “
Evaporation of Liquid Hydrocarbons in Heated Closed Containers
,”
Translated from Inzheneruo-Fizicheskii Z.
,
23
(
4
), pp.
701
708
.
You do not currently have access to this content.