Phase change thermotropic materials have been proposed as a low cost method to provide passive overheat protection for polymer solar thermal absorbers. One challenge to their development is control of the size of the phase change particles dispersed within the matrix. Here we explore encapsulation as a means to resolve this challenge with a focus on the selection of materials, including the encapsulating shell, to achieve desirable optical behavior. Hydroxystearic acid (HSA) particles in a matrix of poly(methyl methacrylate) (PMMA) is down selected from candidate materials based on its optical properties and the melt temperature of the dispersed phase. The optical properties (normal-hemispherical transmittance, reflectance, and absorptance) as a function of the properties of the encapsulation shell and the particle volume fraction are predicted at a wavelength of 589 nm using a Monte Carlo ray tracing model. A range of shell relative refractive indices, from 0.95 to 1, and thicknesses, up to 35 nm, can be employed to achieve greater than 80% transmittance in the clear state and greater than 50% reflectance in the translucent state.

References

1.
IEA Task 39
, “
Polymeric Materials for Solar Thermal Applications, Solar Heating & Cooling Program, International Energy Agency (IEA)
,” http://task39.iea-shc.org/; last accessed Aug. 8,
2014
.
2.
Hudon
,
K.
,
Merrigan
,
T.
,
Burch
,
J.
, and
Maguire
,
J.
,
2012
, “
Low-Cost Solar Water Heating Research and Development Roadmap
,” National Renewable Energy Laboratory (NREL), Technical Report No. NREL/TP-550054793.
3.
Kohl
,
M.
,
Meir
,
M. G.
,
Papillon
,
P.
,
Wallner
,
G. M.
, and
Saile
,
S.
,
2012
,
Polymeric Materials for Solar Thermal Applications
,
Wiley-VCH Verlag & Co.
,
Weinheim, German
, p.
393
.
4.
Burch
,
J. D.
,
2006
, “
Polymer-Based Solar Thermal Systems: Past, Present and Potential Products
,”
Proceedings of the 64th Annual Technical Conference and Exhibition
,
Society of Plastic Engineers
,
Charlotte, NC
, pp.
7
11
.
5.
Martinopoulos
,
G.
,
Missirlis
,
D.
,
Tsilingiridis
,
G.
,
Yakinthos
,
K.
, and
Kyriakis
,
N.
,
2010
, “
CFD Modeling of a Polymer Solar Collector
,”
Renewable Energy
,
35
(
7
), pp.
1499
1508
.10.1016/j.renene.2010.01.004
6.
Tsilingiris
,
P.
,
2002
, “
Back Absorbing Parallel Plate Polymer Absorbers in Solar Collector Design
,”
Energy Convers. Manage.
,
43
(
1
), pp.
135
150
.10.1016/S0196-8904(01)00015-2
7.
Mintsa Do Ango
,
A.
,
Medale
,
M.
, and
Abid
,
C.
,
2013
, “
Optimization of the Design of a Polymer Flat Plate Solar Collector
,”
Sol. Energy
,
87
, pp.
64
75
.10.1016/j.solener.2012.10.006
8.
Cristofari
,
C.
,
Notton
,
G.
,
Poggi
,
P.
, and
Louche
,
A.
,
2002
, “
Modeling and Performance of a Copolymer Solar Water Heating Collector
,”
Sol. Energy
,
72
(
2
), pp.
99
112
.10.1016/S0038-092X(01)00092-5
9.
Siqueira
,
D. A.
,
Vieira
,
L. G. M.
, and
Damasceno
,
J. J. R.
,
2011
, “
Analysis and Performance of a Low-Cost Solar Heater
,”
Renewable Energy
,
36
(
9
), pp.
2538
2546
.10.1016/j.renene.2011.02.019
10.
Meir
,
M.
, and
Rekstad
,
J.
,
2003
, “
Der Solarnor Kunststoffkollektor–The Development of a Polymer Collector With Glazing
,”
Proceedings 1. Leobner Symposium Polymeric Solar Materials
,
Leoben
,
Austria
, pp.
II-1
II-8
.
11.
Resch
,
K.
, and
Wallner
,
G. M.
,
2012
, “
Plastics Market
,”
Polymeric Materials for Solar Thermal Applications
,
M.
Kohl
,
M. G.
Meir
,
P.
Papillon
,
G. M.
Wallner
, and
S.
Saile
, eds.,
Wiley-VCH Verlag & Co.
,
Weinheim, German
, pp.
129
134
.
12.
Rhodes
,
R. O.
,
2010
, “
Polymer Thin-Film Design Reduces Installed Cost of Solar Water Heater
,”
Proceedings of the 39th ASES National Solar Conference
,
Phoenix
,
AZ
, p.
1588
.
13.
Wallner
,
G. M.
,
Resch
,
K.
, and
Hausner
,
R.
,
2008
, “
Property and Performance Requirements for Thermotropic Layers to Prevent Overheating in an all Polymeric Flat-Plate Collector
,”
Sol. Energy Mater. Sol. Cells
,
92
(
6
), pp.
614
620
.10.1016/j.solmat.2007.12.005
14.
Gladen
,
A. C.
,
Davidson
,
J. H.
, and
Mantell
,
S. C.
,
2015
, “
The Effect of a Thermotropic Material on the Optical Efficiency and Stagnation Temperature of a Polymer Flat Plate Solar Collector
,”
J. Solar Energy Eng.
,
137
(
2
), p.
021003
.10.1115/1.4028366
15.
Gladen
,
A. C.
,
Mantell
,
S. C.
, and
Davidson
,
J. H.
,
2014
, “
A Parametric Numerical Study of Optical Behavior of Thermotropic Materials for Solar Thermal Collectors
,”
ASME J. Heat Transfer
,
136
(
7
), p.
072703
.10.1115/1.4027153
16.
Baer
,
S. C.
,
1985
, “
Thermal Control System for Solar Collector
,”
U.S. Patent No. 4,528,976
.
17.
Harrison
,
S.
, and
Cruickshank
,
C. A.
,
2012
, “
A Review of Strategies for the Control of High Temperature Stagnation in Solar Collectors and Systems
,”
Energy Procedia
,
30
, pp.
793
804
.10.1016/j.egypro.2012.11.090
18.
Buckley
,
B. S.
, and
Guldman
,
T. A.
,
1983
, “
Method and Apparatus for Overtemperature Control of Solar Water Heating System
,”
U.S. Patent No. 4,399,807
.
19.
Kusyy
,
O.
, and
Vajen
,
K.
,
2011
, “
Theoretical Investigation on a Control-Based Approach to Avoid Stagnation of Solar Heating Systems
,”
Proceedings of ISES Solar World Congress
,
Kassel
,
Germany
, pp.
3323
3330
.
20.
Kearney
,
M.
,
Davidson
,
J.
, and
Mantell
,
S.
,
1999
, “
Polymeric Absorbers for Flat-Plate Collectors: Can Venting Provide Adequate Overheat Protection?
,”
ASME J. Sol. Energy Eng.
,
127
(
3
), pp.
421
424
.10.1115/1.1979518
21.
Mahdjuri
,
F
.,
1999
, “
Solar Collector With Temperature Limitation Using Shape Memory Metal
,”
Renewable Energy
,
16
(
1
), pp.
611
617
.10.1016/S0960-1481(98)00236-5
22.
Roberts
,
J.
,
Brandemuehl
,
M.
,
Burch
,
J.
, and
Gawlik
,
K.
,
2000
, “
Overheat Protection for Solar Water Heating Systems Using Natural Convection Loops
,”
Proceedings of the Solar Conference
,
The American Solar Energy Society and the American Institute of Architects
,
Madison, WI
, pp.
273
278
.
23.
Russell
,
L.
, and
Guven
,
H.
,
1982
, “
Modeling and Analysis of an All-Plastic Flat-Plate Solar Collector
,”
ASME J. Sol. Energy Eng.
,
104
(
4
), pp.
333
339
.10.1115/1.3266326
24.
Rich
,
A. C.
,
1995
, “
Solar Collector Venting System
,”
U.S. Patent No. 5,404,
867
.
25.
Slaman
,
M.
, and
Griessen
,
R.
,
2009
, “
Solar Collector Overheating Protection
,”
Sol. Energy
,
83
(
7
), pp.
982
987
.10.1016/j.solener.2009.01.001
26.
Muehling
,
O.
,
Seeboth
,
A.
,
Haeusler
,
T.
,
Ruhmann
,
R.
,
Potechius
,
E.
, and
Vetter
,
R.
,
2009
, “
Variable Solar Control Using Thermotropic Core/Shell Particles
,”
Sol. Energy Mater. Sol. Cells
,
93
(
9
), pp.
1510
1517
.10.1016/j.solmat.2009.03.029
27.
Gladen
,
A. C.
,
Davidson
,
J. H.
, and
Mantell
,
S. C.
,
2013
, “
Selection of Thermotropic Materials for Overheat Protection of Polymer Absorbers
,”
Sol. Energy
,
104
, pp.
42
51
.10.1016/j.solener.2013.10.026
28.
Muehling
,
O.
,
Seeboth
,
A.
,
Ruhmann
,
R.
,
Eberhardt
,
V.
,
Byker
,
H.
,
Anderson
,
C. D.
, and
De Jong
,
S.
,
2014
, “
Solar Collector Cover With Temperature-Controlled Solar Light Transmittance
,”
Energy Procedia
,
48
, pp.
163
171
.10.1016/j.egypro.2014.02.021
29.
Thür
,
A. V.
,
Hintringer
,
C.
,
Richtfeld
,
A.
,
Streicher
,
W.
,
Kaiser
,
A.
,
Hausner
,
R.
,
Fink
,
C.
,
Koller
,
W.
, and
Riepl
,
R.
,
2013
, “
Status Quo der Entwicklungen eines überhitzungsgeschützten Kunststoffkollektors
,” Erneuerbare Energie, Vol. 1, last accessed Mar. 10, 2015, http://www.aee.at/aee/index.php?option=com_content&view=article&id=749:status-quo-der-entwicklungen-eines-ueberhitzungsgeschuetzten-kunststoffkollektors&catid=69:2013-01&Itemid=114
30.
Weber
,
A.
, and
Resch
,
K.
,
2014
, “
Thermotropic Glazings for Overheating Protection. I. Material Preselection, Formulation, and Light-Shielding Efficiency
,”
J. Appl. Polym. Sci.
,
131
(
4
), p. 39950.10.1002/app.39950
31.
Weber
,
A.
,
Schmid
,
A.
, and
Resch
,
K.
,
2014
, “
Thermotropic Glazings for Overheating Protection. II. Morphology and Structure–Property Relationships
,”
J. Appl. Polym. Sci.
,
131
(
4
), p. 39910.10.1002/app.39910
32.
Weber
,
A.
,
Schlögl
,
S.
, and
Resch
,
K.
,
2013
, “
Effect of Formulation and Processing Conditions on Light Shielding Efficiency of Thermotropic Systems With Fixed Domains Based on UV Curing Acrylate Resins
,”
J. Appl. Polym. Sci.
,
130
(
5
), pp.
3299
3310
.10.1002/app.39571
33.
Weber
,
A.
, and
Resch
,
K.
,
2012
, “
Thermotropic Glazings for Overheating Protection
,”
Energy Procedia
,
30
, pp.
471
477
.10.1016/j.egypro.2012.11.056
34.
Resch
,
K.
, and
Wallner
,
G. M.
,
2009
, “
Thermotropic Layers for Flat-Plate Collectors—A Review of Various Concepts for Overheating Protection With Polymeric Materials
,”
Sol. Energy Mater. Sol. Cells.
,
93
(
1
), pp.
119
128
.10.1016/j.solmat.2008.09.004
35.
Gladen
,
A. C.
,
Mantell
,
S. C.
, and
Davidson
,
J. H.
,
2013
, “
A Parametric Numerical Study of Radiative Transfer in Thermotropic Materials
,”
ASME
Paper No. HT2013-17183.10.1115/HT2013-17183
36.
Seeboth
,
A.
,
Ruhmann
,
R.
, and
Muehling
,
O.
,
2010
, “
Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control
,”
Materials
,
3
(
12
), pp.
5143
5168
.10.3390/ma3125143
37.
Nitz
,
P.
, and
Hartwig
,
H.
,
2005
, “
Solar Control With Thermotropic Layers
,”
Sol. Energy
,
79
(
6
), pp.
573
582
.10.1016/j.solener.2004.12.009
38.
Nitz
,
P.
,
Ferber
,
J.
,
Stangl
,
R.
,
Rose Wilson
,
H.
, and
Wittwer
,
V.
,
1998
, “
Simulation of Multiply Scattering Media
,”
Sol. Energy Mater. Sol. Cells
,
54
(
1–4
), pp.
297
307
.10.1016/S0927-0248(98)00081-6
39.
Sundararaj
,
U.
, and
Macosko
,
C.
,
1995
, “
Drop Breakup and Coalescence in Polymer Blends: The Effects of Concentration and Compatibilization
,”
Macromolecules
,
28
(
8
), pp.
2647
2657
.10.1021/ma00112a009
40.
Wu
,
S.
,
1987
, “
Formation of Dispersed Phase in Incompatible Polymer Blends: Interfacial and Rheological Effects
,”
Polym. Eng. Sci.
,
27
(
5
), pp.
335
343
.10.1002/pen.760270506
41.
Tyagi
,
V. V.
,
Kaushik
,
S. C.
,
Tyagi
,
S. K.
, and
Akiyama
,
T.
,
2011
, “
Development of Phase Change Materials Based Microencapsulated Technology for Buildings: A Review
,”
Renewable Sustainable Energy Rev.
,
15
(
2
), pp.
1373
1391
.10.1016/j.rser.2010.10.006
42.
Zalba
,
B.
,
Marín
,
J. M.
,
Cabeza
,
L. F.
, and
Mehling
,
H.
,
2003
, “
Review on Thermal Energy Storage With Phase Change: Materials, Heat Transfer Analysis and Applications
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
251
283
.10.1016/S1359-4311(02)00192-8
43.
Zhao
,
C. Y.
, and
Zhang
,
G. H.
,
2011
, “
Review on Microencapsulated Phase Change Materials (MEPCMs): Fabrication, Characterization and Applications
,”
Renewable Sustainable Energy Rev.
,
15
(
8
), pp.
3813
3832
.10.1016/j.rser.2011.07.019
44.
Zhang
,
T.
,
Wang
,
Y.
,
Shi
,
H.
, and
Yang
,
Y.
,
2012
, “
Fabrication and Performances of New Kind Microencapsulated Phase Change Material Based on Stearic Acid Core and Polycarbonate Shell
,”
Energy Convers. Manage.
,
64
, pp.
1
7
.10.1016/j.enconman.2012.04.011
45.
Cho
,
J.
,
Kwon
,
A.
, and
Cho
,
C.
,
2002
, “
Microencapsulation of Octadecane as a Phase-Change Material by Interfacial Polymerization in an Emulsion System
,”
Colloid Polym. Sci.
,
280
(
3
), pp.
260
266
.10.1007/s00396-001-0603-x
46.
Fang
,
Y.
,
Kuang
,
S.
,
Gao
,
X.
, and
Zhang
,
Z.
,
2008
, “
Preparation and Characterization of Novel Nanoencapsulated Phase Change Materials
,”
Energy Convers. Manage.
,
49
(
1–2
), pp.
3704
3707
.10.1016/j.enconman.2008.06.027
47.
Fang
,
G.
,
Li
,
H.
,
Yang
,
F.
,
Liu
,
X.
, and
Wu
,
S.
,
2009
, “
Preparation and Characterization of Nano-Encapsulated n-Tetradecane as Phase Change Material for Thermal Energy Storage
,”
Chem. Eng. J.
,
153
(
1–3
), pp.
217
221
.10.1016/j.cej.2009.06.019
48.
Jin
,
Y.
,
Lee
,
W.
,
Musina
,
Z.
, and
Ding
,
Y.
,
2010
, “
A One-Step Method for Producing Microencapsulated Phase Change Materials
,”
Particuology
,
8
(
6
), pp.
588
590
.10.1016/j.partic.2010.07.009
49.
Sánchez-Silva
,
L.
,
Rodríguez
,
J. F.
,
Romero
,
A.
,
Borreguero
,
A. M.
,
Carmona
,
M.
, and
Sánchez
,
P.
,
2010
, “
Microencapsulation of PCMs With a Styrene-Methyl Methacrylate Copolymer Shell by Suspension-Like Polymerisation
,”
Chem. Eng. J.
,
157
(
1
), pp.
216
222
.10.1016/j.cej.2009.12.013
50.
Sarı
,
A.
,
Alkan
,
C.
,
Karaipekli
,
A.
, and
Uzun
,
O.
,
2009
, “
Microencapsulated n-Octacosane as Phase Change Material for Thermal Energy Storage
,”
Sol. Energy
,
83
(
10
), pp.
1757
1763
.10.1016/j.solener.2009.05.008
51.
Alkan
,
C.
,
Sarı
,
A.
, and
Karaipekli
,
A.
,
2011
, “
Preparation, Thermal Properties and Thermal Reliability of Microencapsulated n-Eicosane as Novel Phase Change Material for Thermal Energy Storage
,”
Energy Convers. Manage.
,
52
(
1
), pp.
687
692
.10.1016/j.enconman.2010.07.047
52.
Sarı
,
A.
,
Alkan
,
C.
, and
Karaipekli
,
A.
,
2010
, “
Preparation, Characterization and Thermal Properties of PMMA/n-Heptadecane Microcapsules as Novel Solid–Liquid MicroPCM for Thermal Energy Storage
,”
Appl. Energy
,
87
(
5
), pp.
1529
1534
.10.1016/j.apenergy.2009.10.011
53.
Pan
,
L.
,
Tao
,
Q.
,
Zhang
,
S.
,
Wang
,
S.
,
Zhang
,
J.
,
Wang
,
S.
,
Wang
,
Z.
, and
Zhang
,
Z.
,
2012
, “
Preparation, Characterization and Thermal Properties of Micro-Encapsulated Phase Change Materials
,”
Sol. Energy Mater. Sol. Cells
,
98
, pp.
66
70
.10.1016/j.solmat.2011.09.020
54.
Weber
,
A.
, and
Resch
,
K.
,
2014
, “
Thermotropic Systems With Fixed Domains Exhibiting Enhanced Overheating Protection Performance
,”
J. Appl. Polym. Sci.
,
131
(
12
).10.1002/app.40417
55.
Mochane
,
M. J.
, and
Luyt
,
A. S.
,
2012
, “
Preparation and Properties of Polystyrene Encapsulated Paraffin Wax as Possible Phase Change Material in a Polypropylene Matrix
,”
Thermochim. Acta
,
544
, pp.
63
70
.10.1016/j.tca.2012.06.017
56.
Liang
,
C.
,
Lingling
,
X.
,
Hongbo
,
S.
, and
Zhibin
,
Z.
,
2009
, “
Microencapsulation of Butyl Stearate as a Phase Change Material by Interfacial Polycondensation in a Polyurea System
,”
Energy Convers. Manage.
,
50
(
3
), pp.
723
729
.10.1016/j.enconman.2008.09.044
57.
Wang
,
Y.
,
Xia
,
T. D.
,
Feng
,
H. X.
, and
Zhang
,
H.
,
2011
, “
Stearic Acid/ Polymethylmethacrylate Composite as Form-Stable Phase Change Materials for Latent Heat Thermal Energy Storage
,”
Renewable Energy
,
36
(
6
), pp.
1814
1820
.10.1016/j.renene.2010.12.022
58.
Shirin-Abadi
,
A. R.
,
Mahdavian
,
A. R.
, and
Khoee
,
S.
,
2011
, “
New Approach for the Elucidation of PCM Nanocapsules Through Miniemulsion Polymerization With an Acrylic Shell
,”
Macromolecules
,
44
(
18
), pp.
7405
7414
.10.1021/ma201509d
59.
Yang
,
R.
,
Zhang
,
Y.
,
Wang
,
X.
,
Zhang
,
Y.
, and
Zhang
,
Q.
,
2009
, “
Preparation of n-Tetradecane-Containing Microcapsules With Different Shell Materials by Phase Separation Method
,”
Sol. Energy Mater. Sol. Cells
,
93
(
10
), pp.
1817
1822
.10.1016/j.solmat.2009.06.019
60.
Tseng
,
Y.
,
Fang
,
M.
,
Tsai
,
P.
, and
Yang
,
Y.
,
2005
, “
Preparation of Microencapsulated Phase-Change Materials (MCPCMs) by Means of Interfacial Polycondensation
,”
J. Microencapsulation
,
22
, pp.
37
46
.10.1080/02652040400026558
61.
Zhang
,
H.
, and
Wang
,
X.
,
2009
, “
Fabrication and Performances of Microencapsulated Phase Change Materials Based on n-Octadecane Core and Resorcinol-Modified Melamine–Formaldehyde Shell
,”
Colloids Surf., A
,
332
(
2–3
), pp.
129
138
.10.1016/j.colsurfa.2008.09.013
62.
Zou
,
G. L.
,
Tan
,
Z. C.
,
Lan
,
X. Z.
,
Sun
,
L. X.
, and
Zhang
,
T.
,
2004
, “
Preparation and Characterization of Microencapsulated Hexadecane Used for Thermal Energy Storage
,”
Chin. Chem. Lett.
,
15
(
6
), pp.
729
732
.
63.
Fang
,
G.
,
Chen
,
Z.
, and
Li
,
H.
,
2010
, “
Synthesis and Properties of Microencapsulated Paraffin Composites With SiO2 Shell as Thermal Energy Storage Materials
,”
Chem. Eng. J.
,
163
(
1–2
), pp.
154
159
.10.1016/j.cej.2010.07.054
64.
Li
,
H.
,
Fang
,
G.
, and
Liu
,
X.
,
2010
, “
Synthesis of Shape-Stabilized Paraffin/Silicon Dioxide Composites as Phase Change Material for Thermal Energy Storage
,”
J. Mater. Sci.
,
45
(
6
), pp.
1672
1676
.10.1007/s10853-009-4146-8
65.
Jiang
,
Y.
,
Wang
,
D.
, and
Zhao
,
T.
,
2007
, “
Preparation, Characterization, and Prominent Thermal Stability of Phase-Change Microcapsules With Phenolic Resin Shell and n-Hexadecane Core
,”
J. Appl. Polym. Sci.
,
104
(
5
), pp.
2799
2806
.10.1002/app.25962
66.
Berkland
,
C.
,
Pollauf
,
E.
,
Pack
,
D. W.
, and
Kim
,
K.
,
2004
, “
Uniform Double-Walled Polymer Microspheres of Controllable Shell Thickness
,”
J. Controlled Release
,
96
(
1
), pp.
101
111
.10.1016/j.jconrel.2004.01.018
67.
Bohren
,
C. F.
, and
Huffman
,
D. R.
,
1998
,
Absorption and Scattering of Light by Small Particles
,
Wiley-Interscience
,
New York
.
68.
Tien
,
C. L.
, and
Drolen
,
B.
,
1987
, “
Thermal Radiation in Particulate Media With Dependent and Independent Scattering
,”
Annual Review of Numerical Fluid Mechanics and Heat Transfer
,
Hemisphere
,
Washington, DC
, Vol.
1
, pp.
1
32
.
69.
Viskanta
,
R.
, and
Mengüç
,
M. P.
,
1987
, “
Radiation Heat Transfer in Combustion Systems
,”
Prog. Energy Combust. Sci.
,
13
(
2
), pp.
97
160
.10.1016/0360-1285(87)90008-6
70.
Mishchenko
,
M. I.
,
Travis
,
L. D.
, and
Lacis
,
A. A.
,
2006
,
Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering
,
Cambridge University Press
,
New York
.
71.
Modest
,
M.
,
2003
,
Radiative Heat Transfer
, 2nd ed.,
Academic
,
New York
, pp.
263
287
.
72.
Randrianalisoa
,
J.
, and
Baillis
,
D.
,
2010
, “
Radiative Properties of Densely Packed Spheres in Semitransparent Media: A New Geometric Optics Approach
,”
J. Quant. Spectrosc. Radiat. Transfer
,
111
(
10
), pp.
1372
1388
.10.1016/j.jqsrt.2010.01.014
73.
Dombrovskii
,
L. A.
,
2004
, “
The Propagation of Infrared Radiation in a Semitransparent Liquid Containing Gas Bubbles
,”
High Temp.
,
42
(
1
), pp.
146
153
.10.1023/B:HITE.0000020103.82678.13
74.
Aden
,
A. L.
, and
Kerker
,
M.
,
1951
, “
Scattering of Electromagnetic Waves From Two Concentric Spheres
,”
J. Appl. Phys.
,
22
(
10
), pp.
1242
1246
.10.1063/1.1699834
75.
Khashan
,
M.
, and
Nassif
,
A.
,
2001
, “
Dispersion of the Optical Constants of Quartz and Polymethyl Methacrylate Glasses in a Wide Spectral Range: 0.2–3 μm
,”
Opt. Commun.
,
188
(
1
), pp.
129
139
.10.1016/S0030-4018(00)01152-4
76.
Randrianalisoa
,
J.
,
Baillis
,
D.
, and
Pilon
,
L.
,
2006
, “
Modeling Radiation Characteristics of Semitransparent Media Containing Bubbles or Particles
,”
J. Opt. Soc. Am. A
,
23
(
33
), pp.
1645
1656
.10.1364/JOSAA.23.001645
77.
Baneshi
,
M.
,
Maruyama
,
S.
, and
Komiya
,
A.
,
2010
, “
Infrared Radiative Properties of Thin Polyethylene Coating Pigmented With Titanium Dioxide Particles
,”
ASME J. Heat Transfer
,
132
(
2
), p.
023306
.10.1115/1.4000235
78.
Modest
,
M.
,
2003
,
Radiative Heat Transfer
, 2nd ed.,
Academic
, New York, pp.
644
679
.
79.
Farmer
,
J. T.
, and
Howell
,
J. R.
,
1998
, “
Comparison of Monte Carlo Strategies for Radiative Transfer in Participating Media
,”
Advances in Heat Transfer
,
Elsevier
, New York, pp.
333
429
.
80.
Gooch
,
J. W.
,
2011
,
Encyclopedic Dictionary of Polymers
, 2nd ed., Springer, New York, p.
520
, http://link.springer.com/referencework/10.1007%2F978-1-4419-6247-8
81.
Polyanskiy
,
M.
,
2013
, “
Refractive Index Database
,” refractiveindex.info; last accessed Aug. 8, 2014.
You do not currently have access to this content.