We develop a method requiring minimal computations to optimize the fin thickness and spacing in a fully shrouded longitudinal-fin heat sink (LFHS) to minimize its thermal resistance under conditions of hydrodynamically and thermally developed laminar flow. Prescribed quantities are the density, viscosity, thermal conductivity and specific heat capacity of the fluid, the thermal conductivity and height of the fins, the width and length of the heat sink, and the pressure drop across it. Alternatively, the length of the heat sink may be optimized as well. The shroud of the heat sink is assumed to be adiabatic and its base isothermal. Our results are relevant to, e.g., microchannel cooling applications where base isothermality can be achieved by using a heat spreader or a vapor chamber. The present study is distinct from the previous work because it does not assume a uniform heat transfer coefficient, but fully captures the velocity and temperature fields by numerically solving the conjugate heat transfer problem in dimensionless form using an existing approach. We develop a dimensionless formulation and compute a dense tabulation of the relevant parameters that allows the thermal resistance to be calculated algebraically over a relevant range of dimensionless parameters. Hence, the optimization method does not require the time-consuming solution of the conjugate problem. Once the optimal dimensionless fin thickness and spacing are obtained, their dimensional counterparts are computed algebraically. The optimization method is illustrated in the context of direct liquid cooling.

References

1.
Lee
,
S.
,
1995
, “
Optimum Design and Selection of Heat Sinks
,”
Eleventh Annual IEEE Semiconductor Thermal Measurement and Management Symposium, SEMI-THERM XI
, pp.
48
54
.
2.
Iyengar
,
M.
, and
Bar-Cohen
,
A.
,
2001
, “
Design for Manufacturability of SISE Parallel Plate Forced Convection Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
150
158
.
3.
Bejan
,
A.
, and
Sciubba
,
E.
,
1992
, “
The Optimal Spacing of Parallel Plates Cooled by Forced Convection
,”
Int. J. Heat Mass Transfer
,
35
(
12
), pp.
3259
3264
.
4.
Teertstra
,
P.
,
Yovanovich
,
M. M.
, and
Culham
,
J.
,
2000
, “
Analytical Forced Convection Modeling of Plate Fin Heat Sinks
,”
J. Electron. Manuf.
,
10
(
04
), pp.
253
261
.
5.
Knight
,
R. W.
,
Goodling
,
J. S.
, and
Hall
,
D. J.
,
1991
, “
Optimal Thermal Design of Forced Convection Heat Sinks-Analytical
,”
ASME J. Electron. Packag.
,
113
(
3
), pp.
313
321
.
6.
Knight
,
R.
,
Hall
,
D.
,
Goodling
,
J.
, and
Jaeger
,
R.
,
1992
, “
Heat Sink Optimization With Application to Microchannels
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
15
(
5
), pp.
832
842
.
7.
Sparrow
,
E. M.
,
Baliga
,
B. R.
, and
Patankar
,
S. V.
,
1978
, “
Forced Convection Heat Transfer From a Shrouded Fin Array With and Without Tip Clearance
,”
ASME J. Heat Transfer
,
100
(
4
), pp.
572
579
.
8.
Li
,
J.
, and
Peterson
,
G.
,
2006
, “
Geometric Optimization of a Micro Heat Sink With Liquid Flow
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(
1
), pp.
145
154
.
9.
Husain
,
A.
, and
Kim
,
K.-Y.
,
2008
, “
Shape Optimization of Micro-Channel Heat Sink for Micro-Electronic Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
2
), pp.
322
330
.
10.
Weisberg
,
A.
,
Bau
,
H. H.
, and
Zemel
,
J.
,
1992
, “
Analysis of Microchannels for Integrated Cooling
,”
Int. J. Heat Mass Transfer
,
35
(
10
), pp.
2465
2474
.
11.
Bergman
,
T. L.
,
Incropera
,
F. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
, New York.
12.
Corless
,
R. M.
,
Gonnet
,
G. H.
,
Hare
,
D. E.
,
Jeffrey
,
D. J.
, and
Knuth
,
D. E.
,
1996
, “
On the LambertW Function
,”
Adv. Comput. Math.
,
5
(
1
), pp.
329
359
.
13.
Karamanis
,
G.
,
2015
, “
Optimized Longitudinal-Fin Heat Sinks Accounting for Non-Uniform Heat Transfer Coefficient
,” Master's thesis, Tufts University, Medford, MA.
14.
Nellis
,
G. F.
, and
Klein
,
S. A.
,
2009
,
Heat Transfer
,
Cambridge University Press
,
New York, NY
.
You do not currently have access to this content.