The paper presents a novel study on film cooling effectiveness of a 3D flat plate with a multihole arrangement of mixed hole shapes. The film cooling arrangement consists of two rows of coolant holes, organized in a staggered pattern with an L/D (length to diameter ratio) of 10. The two rows consist of varied combinations of triangular and semi-elliptic shaped holes for the enhancement of film-cooling effectiveness. The results were obtained for a coolant to mainstream temperature ratio of 0.5 and a blowing ratio of 1.0. The computed flow temperature fields are presented in addition to the local two-dimensional streamwise and spanwise distribution of film cooling effectiveness. Validation of the results obtained from the turbulence model has been done with the experimental data of centerline film cooling effectiveness downstream of the cooling holes available in the open literature. The results showed the rapid merging of coolant jets emerging from front row of multiholes with the secondary staggered row of mixed holes. Due to the mainstream–coolant jet interaction, the strength of the counter rotating vortex pair was mitigated in the downstream region for certain arrangement of mixed hole shapes. The optimal hole combination with maximum overall effectiveness has been deduced from this study. The best configuration (M.R. VI) not only favored for the developed film, but also enhanced the averaged film cooling effectiveness to a large extent.

References

1.
Goldstein
,
R. J.
,
Eckert
,
E. R. G.
, and
Burggraf
,
F.
,
1974
, “
Effects of Hole Geometry and Density on Three Dimensional Film Cooling
,”
Int. J. Heat Mass Transfer
,
17
(2), pp.
595
607
.
2.
Cerri
,
G.
,
Giovannelli
,
A.
,
Battisti
,
L.
, and
Fedrizzi
,
R.
,
2007
, “
Advances in Effusive Cooling Techniques of gas Turbines
,”
Appl. Therm. Eng.
,
27
(
4
), pp.
692
698
.
3.
Tarchi
,
L.
,
Facchini
,
B.
,
Maiuolo
,
F.
, and
Coutandin
,
D.
,
2012
, “
Experimental Investigation on the Effects of a Large Recirculating Area on the Performance of an Effusion Cooled Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
,
134
(
4
), p.
041505
.
4.
Makki
,
Y.
, and
Jakubowski
,
G.
,
1986
, “
An Experimental Study of Film Cooling From Diffused Trapezoidal Shaped Holes
,”
AIAA
Paper No. 86-1326.
5.
Berger
,
P. A.
, and
Liburdy
,
J. A.
,
1998
, “
A Near-Field Investigation Into the Effects of Geometry and Compound Angle on the Flowfield of a Row of Film Cooling Holes
,”
ASME
Paper No. 98-GT-279.
6.
Kohli
,
A.
, and
Thole
,
K. A.
,
1998
, “
Entrance Effects on Diffused Film Cooling Holes
,”
ASME
Paper No. 98-GT-402.
7.
Chen
,
P.-H.
,
Ai
,
D.
, and
Lee
,
S.-H.
,
1998
, “
Effects of Compound Angle Injection on Flat-Plate Film Cooling Through a Row of Conical Holes
,”
ASME
Paper No. 99-GT-459.
8.
Bell
,
C. M.
,
Hamakawa
,
H.
, and
Ligrani
,
P. M.
,
2000
, “
Film Cooling From Shaped Holes
,”
ASME J. Heat Transfer
,
122
(2), pp.
224
232
.
9.
Yu
,
Y.
,
Yen
,
C.-H.
,
Shih
,
T. I.-P.
,
Chyu
,
M. K.
, and
Gogineni
,
S.
,
2002
, “
Film Cooling Effectiveness and Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes
,”
ASME J. Heat Transfer
,
124
(5), pp.
820
827
.
10.
Yuen
,
R. F.
, and
Martinez-Botas
,
C. H. N.
,
2005
, “
Film Cooling Characteristics of Rows of Round Holes at Various Streamwise Angles in a Crossflow, Part I: Effectiveness
,”
Int. J. Heat Mass Transfer
,
48
(
23–24
), pp.
4995
5016
.
11.
Kercher
,
D. M.
,
1998
, “
A Film-Cooling CFD Bibliography: 1971–1996
,”
Int. J. Rotating Mach.
,
4
(1), pp.
61
72
.
12.
Bunker
,
R. S.
,
2005
, “
A Review of Shaped Hole Turbine Film-Cooling Technology
,”
ASME J. Heat Transfer
,
127
(4), pp.
441
454
.
13.
Andrews
,
G. E.
,
Khalifa
,
I. M.
,
Asere
,
A. A.
, and
Bazdidi-Tehrani
,
F.
,
1995
, “
Full Coverage Effusion Film Cooling With Inclined Holes
,”
ASME
Paper No. 95-GT.
14.
Leger
,
B.
,
Miron
,
P.
, and
Emidio
,
J. M.
,
2003
, “
Geometric and Aero-Thermal Influences on Multi Holed Plate Temperature: Application on Combustor Wall
,”
Int. J. Heat Mass Transfer
,
46
(
7
), pp.
1215
1222
.
15.
Hyams
,
D. G.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part III-Streamwise Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
(1), pp.
122
132
.
16.
Brittingham
,
R. A.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film Cooling Physics: Part IV—Compound-Angle Injection With Shaped Holes
,”
ASME J. Turbomach.
,
122
(1), pp.
133
145
.
17.
Wang
,
T.
,
Chintalapati
,
S.
,
Bunker
,
R. S.
, and
Lee
,
C. P.
,
2000
, “
Jet Mixing in a Slot
,”
Experimental Thermal Fluid Sci.
,
22
(1–2), pp.
1
17
.
18.
Lu
,
Y.
,
Nasir
,
H.
, and
Ekkad
,
S. V.
,
2005
, “
Film Cooling From a Row of Holes Embedded in Transverse Slots
,”
ASME
Paper No. IGTI 2005-68598.
19.
Bunker
,
R. S.
,
Bailey
,
J. C.
,
Lee
,
C. P.
, and
Abuaf
,
N.
,
2001
, “
Method for Improving the Cooling Effectiveness of a Gaseous Coolant Stream and Related Articles of Manufacture
,”
U.S. Patent No. 6,234,755 B1
.
20.
Lu
,
Y.
, and
Ekkad
,
S.
,
2006
, “
Predictions of Film Cooling From Cylindrical Holes Embedded in Trenches
,”
AIAA
Paper No. 2006-3401.
21.
Lorenzini
,
G.
,
Biserni
,
C.
, and
Rocha
,
L. A. O.
,
2013
, “
Geometric Optimization of C-Shaped Cavities According to Bejan's Theory: General Review and Comparative Study
,”
ASME J. Electron. Packag.
,
135
(
3
), p.
031007
.
22.
Lorenzini
,
G.
,
Biserni
,
C.
, and
Rocha
,
L. A. O.
,
2014
, “
Geometric Optimization of X-Shaped Cavities and Pathways According to Bejan's Theory: Comparative Analysis
,”
Int. J. Heat Mass Transfer
,
73
, pp.
1
8
.
23.
Lorenzini
,
G.
,
Biserni
,
C.
,
Link
,
F. B.
,
Isoldi
,
L. A.
,
dos Santos
,
E. D.
, and
Rocha
,
L. A. O.
,
2013
, “
Constructal Design of T-Shaped Cavity for Several Convective Fluxes Imposed at the Cavity Surfaces
,”
J. Eng. Thermophys.
,
22
(
4
), pp.
309
321
.
24.
Lorenzini
,
G.
,
Biserni
,
C.
,
Estrada
,
E. D.
,
Isoldi
,
L. A.
,
dos Santos
,
E. D.
, and
Rocha
,
L. A. O.
,
2014
, “
Constructal Design of Convective Y-Shaped Cavities by Means of Genetic Algorithm
,”
ASME J. Heat Transfer
,
136
(
7
), p.
071702
.
25.
Versteeg
,
H. H. K.
, and
Malalasekera
,
W.
,
2007
, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson Education, Essex, UK.
26.
Majumdar
,
S.
,
Rodi
,
W.
, and
Zhu
,
J.
,
1992
, “
Three-Dimensional Finite Volume Method for Incompressible Flows With Complex Boundaries
,”
ASME J. Fluids Eng.
,
114
(4), pp.
496
503
.
27.
Ghorab
,
M. G.
,
2011
, “
Adiabatic and Conjugate Cooling Effectiveness Analysis of a New Hybrid Scheme
,”
Int. J. Therm. Sci.
,
50
(
6
), pp.
965
983
.
28.
Silieti
,
M.
,
Kassab
,
A. J.
, and
Divo
,
E.
,
2009
, “
Film Cooling Effectiveness: Comparison of Adiabatic and Conjugate Heat Transfer CFD Models
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2237
2248
.
29.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1968
,
Heat and Mass Transfer in Boundary Layers
,
Morgan-Grampian
, London.
30.
Acharya
,
S.
,
1999
, “
Large Eddy Simulations and Turbulence Modeling for Film Cooling
,” NACA, Report No. 1999-209310.
31.
Leylek
,
J. H.
, and
Zerkle
,
R. D.
,
1994
, “
Discrete-jet Film Cooling: A Comparison of Computational Results With Experiments
,”
ASME J. Turbomach.
,
116
(3), pp.
358
368
.
32.
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2000
, “
A Detailed Analysis of Film-Cooling Physics: Part I-Streamwise Injection With Cylindrical Holes
,”
ASME J. Turbomach.
,
122
(1), pp.
102
112
.
You do not currently have access to this content.