Accelerated development in the field of electronics and integrated circuit technology further pushed the need for better heat dissipating devices with reduced component dimensions. In the design optimization of microchannel heat transfer systems, multiple objectives must be satisfied but correlations limit the satisfaction levels. End users define their preferences associated with the desired quality/quantity of each parameter and specify the priorities among each preference. In this paper, an optimization strategy based on the prioritized performances is developed to find the optimal design variables for the preferences in three different aspects namely: minimized thermal resistances, minimized pressure drop, and maximized heat flux. The preferences are often fuzzy and correlated but can be modeled mathematically using Gaussian membership functions with respect to different levels of user preferences. The overall performances are maximized to find the most favorable solution on the Pareto frontier. Two different types of single-phase liquid cooling (straight and U-shaped microchannel heat sinks) have been utilized as heat exchangers of electronic chips and made as practical examples for the proposed optimization strategy. The optimal design points vary with respect to the priorities of the preferences. The proposed methodology finds the most favored solution on the Pareto frontiers. It is novel to reveal that the chosen significant factors were maximized with results yielding to lower thermal resistance, lower pressure drop, and higher heat flux in the microchannel heat sink based on the design preferences with different priorities.

References

1.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2003
, “
Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
,
24
(
1
), pp.
3
17
.
2.
Ndao
,
S.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2009
, “
Multi-Objective Thermal Design Optimization and Comparative Analysis of Electronics Cooling Technologies
,”
Int. J. Heat Mass Transfer
,
52
(
19
), pp.
4317
4326
.
3.
Zhang
,
J.
,
Lin
,
P. T.
, and
Jaluria
,
Y.
,
2011
, “
Designs of Multiple Microchannel Heat Transfer Systems
,”
ASME
Paper No. IMECE2011-62539.
4.
Lin
,
P. T.
,
Zhang
,
J.
,
Jaluria
,
Y.
, and
Gea
,
H. C.
,
2012
, “
Design and Optimization of Multiple Microchannel Heat Transfer Systems Based on Multiple Prioritized Preferences
,”
ASME
Paper No. DETC2012-70869.
5.
Zhang
,
J.
,
Lin
,
P. T.
, and
Jaluria
,
Y.
,
2013
, “
Design and Optimization of Multiple Microchannel Heat Transfer Systems
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
1
), p.
011004
.
6.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Garimella
,
S.
,
Pease
,
R. F.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
,
2013
, “
Heat Transfer in Microchannels—2012 Status and Research Needs
,”
ASME J. Heat Transfer
,
135
(
9
), p.
091001
.
7.
Mcglen
,
R. J.
,
Jachuck
,
R.
, and
Lin
,
S.
,
2004
, “
Integrated Thermal Management Techniques for High Power Electronic Devices
,”
Appl. Therm. Eng.
,
24
(
8
), pp.
1143
1156
.
8.
Ross
,
P. E.
,
2004
, “
Beat the Heat
,”
IEEE Spectrum
,
41
(
5
), pp.
38
43
.
9.
Türkakar
,
G.
, and
Okutucu-Özyurt
,
T.
,
2012
, “
Dimensional Optimization of Microchannel Heat Sinks With Multiple Heat Sources
,”
Int. J. Therm. Sci.
,
62
, pp.
85
92
.
10.
Allan
,
A.
,
Edenfeld
,
D.
,
Joyner
,
W. H.
,
Kahng
,
A. B.
,
Rodgers
,
M.
, and
Zorian
,
Y.
,
2002
, “
2001 Technology Roadmap for Semiconductors
,”
Computer
,
35
(
1
), pp.
42
53
.
11.
Tuckerman
,
D. B.
, and
Pease
,
R.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
12.
Rostami
,
A.
,
Saniei
,
N.
, and
Mujumdar
,
A.
,
2000
, “
Liquid Flow and Heat Transfer in Microchannels: A Review
,”
Heat Technol.
,
18
(
2
), pp.
59
68
.
13.
Palm
,
B.
,
2001
, “
Heat Transfer in Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
3
), pp.
155
175
.
14.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
,
2001
, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
,
5
(
4
), pp.
293
311
.
15.
Morini
,
G. L.
,
2004
, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
,
43
(
7
), pp.
631
651
.
16.
Wei
,
X. J.
, and
Joshi
,
Y.
,
2004
, “
Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components
,”
ASME J. Electron. Packag.
,
126
(
1
), pp.
60
66
.
17.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Yarin
,
L.
,
2005
, “
Heat Transfer in Micro-Channels: Comparison of Experiments With Theory and Numerical Results
,”
Int. J. Heat Mass Transfer
,
48
(
25
), pp.
5580
5601
.
18.
Steinke
,
M. E.
,
Kandlikar
,
S. G.
,
Magerlein
,
J. H.
,
Colgan
,
E. G.
, and
Raisanen
,
A. D.
,
2006
, “
Development of an Experimental Facility for Investigating Single-Phase Liquid Flow in Microchannels
,”
Heat Transfer Eng.
,
27
(
4
), pp.
41
52
.
19.
Papautsky
,
I.
,
Ameel
,
T.
, and
Frazier
,
A. B.
,
2001
, “
A Review of Laminar Single Phase Flow in Microchannels
,” Micro-Electrochemical Systems Division Publication, MEMS-Vol. 3, A. L. Lee, J. Simon, K. Breuer, S. Chen, R. S. Keynton, A. Malshe, J.-I. Mou, and M. Dunn, eds, ASME, New York, pp. 495–503.
20.
Rosa
,
P.
,
Karayiannis
,
T. G.
, and
Collins
,
M. W.
,
2009
, “
Single-Phase Heat Transfer in Microchannels: The Importance of Scaling Effects
,”
Appl. Therm. Eng.
,
29
(
17–18
), pp.
3447
3468
.
21.
Husain
,
A.
, and
Kim
,
K.-Y.
,
2008
, “
Multiobjective Optimization of a Microchannel Heat Sink Using Evolutionary Algorithm
,”
ASME J. Heat Transfer
,
130
(
11
), p.
114505
.
22.
Liu
,
D.
, and
Garimella
,
S. V.
,
2005
, “
Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks
,”
Int. J. Numer. Methods Heat Fluid Flow
,
15
(
1
), pp.
7
26
.
23.
Chen
,
Y.
, and
Cheng
,
P.
,
2002
, “
Heat Transfer and Pressure Drop in Fractal Tree-Like Microchannel Nets
,”
Int. J. Heat Mass Transfer
,
45
(
13
), pp.
2643
2648
.
24.
Vafai
,
K.
, and
Zhu
,
L.
,
1999
, “
Analysis of Two-Layered Micro-Channel Heat Sink Concept in Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
42
(
12
), pp.
2287
2297
.
25.
Fedorov
,
A. G.
, and
Viskanta
,
R.
,
2000
, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
,
43
(
3
), pp.
399
415
.
26.
Husain
,
A.
, and
Kim
,
K.-Y.
,
2007
, “
Design Optimization of Micro-Channel for Micro Electronic Cooling
,”
ASME
Paper No. ICNMM2007-30053.
27.
Zhang
,
J.
,
Prakash
,
S.
, and
Jaluria
,
Y.
,
2010
, “
An Experimental Study on the Effect of Configuration of Multiple Microchannels on Heat Removal for Electronic Cooling
,”
ASME
Paper No. IHTC14-22234.
28.
Lin
,
P. T.
,
Jaluria
,
Y.
, and
Gea
,
H. C.
,
2009
, “
Parametric Modeling and Optimization of Chemical Vapor Deposition Process
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011011
.
29.
Lin
,
P. T.
,
Gea
,
H. C.
, and
Jaluria
,
Y.
,
2010
, “
Systematic Strategy for Modeling and Optimization of Thermal Systems With Design Uncertainties
,”
Front. Heat Mass Transfer
,
1
, p.
013003
.
30.
Sharma
,
C. S.
,
Zimmermann
,
S.
,
Tiwari
,
M. K.
,
Michel
,
B.
, and
Poulikakos
,
D.
,
2012
, “
Optimal Thermal Operation of Liquid-Cooled Electronic Chips
,”
Int. J. Heat Mass Transfer
,
55
(
7
), pp.
1957
1969
.
31.
Deb
,
K.
,
2001
,
Multi-Objective Optimization Using Evolutionary Algorithms
,
Wiley
,
New York
, pp. 50–57.
32.
Queipo
,
N. V.
,
Humphrey
,
J. A. C.
, and
Ortega
,
A.
,
1998
, “
Multiobjective Optimal Placement of Convectively Cooled Electronic Components on Printed Wiring Boards
,”
IEEE Trans. Compon., Packag., Manuf. Technol., Part A
,
21
(
1
), pp.
142
153
.
33.
Erbas
,
I.
,
Bitterman
,
M. S.
, and
Stouffs
,
R.
,
2011
, “
Use of a Knowledge Model for Integrated Performance Evaluation for Housing (Re) Design Towards Environmental Sustainability: A Case Study
,” Computer Aided Architectural Design Futures Conference (
CAAD
), Liege, Belgium, pp.
281
295
.
34.
Kasabov
,
N. K.
,
1998
,
Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering
,
MIT Press
,
Cambridge, MA
.
35.
Saaty
,
T. L.
,
2008
, “
Decision Making With the Analytic Hierarchy Process
,”
Int. J. Serv. Sci.
,
1
(
1
), pp.
83
98
.
36.
Lin
,
P. T.
, and
Gea
,
H. C.
,
2013
, “
A Gradient-Based Transformation Method in Multidisciplinary Design Optimization
,”
Struct. Multidiscip. Optim.
,
47
(
5
), pp.
715
733
.
37.
Lin
,
P. T.
, and
Gea
,
H. C.
,
2013
, “
Reliability-Based Multidisciplinary Design Optimization Using Probabilistic Gradient-Based Transformation Method
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021001
.
38.
Chou
,
Y.-C.
, and
Lin
,
P. T.
,
2012
, “
Efficient Design Optimization of Multi-State Flow Network for Multiple Commodities
,”
International Conference on Mechanical, Aeronautical and Manufacturing Engineering
(
ICMAME
), Tokyo, Japan, Paper No. JP65000.
39.
Chou
,
Y.-C.
, and
Lin
,
P. T.
,
2015
, “
An Efficient and Robust Design Optimization of Multi-State Flow Network for Multiple Commodities Using Generalized Reliability Evaluation Algorithm and Edge Reduction Method
,”
Int. J. Syst. Sci.
,
46
(
14
), pp.
2659
2672
.
40.
Foli
,
K.
,
Okabe
,
T.
,
Olhofer
,
M.
,
Jin
,
Y.
, and
Sendhoff
,
B.
,
2006
, “
Optimization of Micro Heat Exchanger: CFD, Analytical Approach and Multi-Objective Evolutionary Algorithms
,”
Int. J. Heat Mass Transfer
,
49
(
5
), pp.
1090
1099
.
41.
Husain
,
A.
, and
Kim
,
K.-Y.
,
2010
, “
Enhanced Multi-Objective Optimization of a Microchannel Heat Sink Through Evolutionary Algorithm Coupled With Multiple Surrogate Models
,”
Appl. Therm. Eng.
,
30
(
13
), pp.
1683
1691
.
42.
Zhang
,
J.
,
2012
, “
Cooling of Electronic System: From Electronic Chips to Data Centers
,”
PhD dissertation
, Rutgers University, New Brunswick, NJ.
43.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2004
, “
Evaluation of Single Phase Flow in Microchannels for High Heat Flux Chip Cooling—Thermohydraulic Performance Enhancement and Fabrication Technology
,”
Heat Transfer Eng.
,
25
(
8
), pp.
5
16
.
44.
Hassan
,
I.
,
Phutthavong
,
P.
, and
Abdelgawad
,
M.
,
2004
, “
Microchannel Heat Sinks: An Overview of the State-of-the-Art
,”
Microscale Thermophys. Eng.
,
8
(
3
), pp.
183
205
.
45.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing
, Washington, DC.
46.
Leonard
,
B. P.
,
1979
, “
A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
,
19
(
1
), pp.
59
98
.
47.
Van Beers
,
W. C. M.
, and
Kleijnen
,
J. P. C.
,
2003
, “
Kriging for Interpolation in Random Simulation
,”
J. Oper. Res. Soc.
,
54
(
3
), pp.
255
262
.
48.
Van Beers
,
W. C. M.
, and
Kleijnen
,
J. P. C.
,
2004
, “Kriging Interpolation in Simulation: A Survey,”
36th Conference on Winter Simulation
, Washington DC, Dec. 5–8, pp.
113
121
.
49.
Weisberg
,
A.
,
Bau
,
H. H.
, and
Zemel
,
J.
,
1992
, “
Analysis of Microchannels for Integrated Cooling
,”
Int. J. Heat Mass Transfer
,
35
(
10
), pp.
2465
2474
.
50.
De Jongh
,
D.
, and
Liu
,
F.
,
2009
, “
Preference Change
,”
Theory and Decision Library
, Vol. 42,
Springer
,
Dordrecht, The Netherlands
, pp.
85
107
.
51.
Medasani
,
S.
,
Kim
,
J.
, and
Krishnapuram
,
R.
,
1998
, “
An Overview of Membership Function Generation Techniques for Pattern Recognition
,”
Int. J. Approximate Reasoning
,
19
(
3–4
), pp.
391
417
.
52.
Lin
,
P. T.
,
Chang
,
C.-J.
,
Huang
,
H.
, and
Zheng
,
B.
,
2011
, “
Design of Cooling System for Electronic Devices Using Impinging Jets
,”
COMSOL
Conference
, Boston, MA.
You do not currently have access to this content.