The objective of this paper is to investigate the behavior of two well-known boundary-driven molecular dynamics (MD) approaches, namely, reverse nonequilibrium molecular dynamics (RNEMD) and heat exchange algorithm (HEX), as well as introducing a modified HEX model (MHEX) that is more accurate and computationally efficient to simulate the mass and heat transfer mechanism. For this investigation, the following binary mixtures were considered: one equimolar mixture of argon (Ar) and krypton (Kr), one nonequimolar liquid mixture of hexane (nC6) and decane (nC10), and three nonequimolar mixtures of pentane (nC5) and decane. In estimating the Thermodiffusion factor in these mixtures using the three methods, it was found that consistent with the findings in the literature, RNEMD predictions have the largest error with respect to the experimental data. Whereas, the MHEX method proposed in this work is the most accurate, marginally outperforming the HEX method. Most importantly, the computational efficiency of MHEX method is the highest, about 7% faster than the HEX method. This makes it more suitable for integration with multiscale computational models to simulate thermodiffusion in a large system such as an oil reservoir.

References

1.
Srinivasan
,
S.
, and
Saghir
,
M. Z.
,
2013
,
Thermodiffusion in Multicomponent Mixtures
,
Springer
, New York, Chap. 1.
2.
Huang
,
F.
,
Chakraborty
,
P.
,
Lundstrom
,
C. C.
,
Holmden
,
C.
,
Glessner
,
J. J. G.
,
Kieffer
,
S. W.
, and
Lesher
,
C. E.
,
2010
, “
Isotope Fractionation in Silicate Melts by Thermal Diffusion
,”
Nature
,
464
(
7287
), pp.
396
400
.
3.
Halder
,
A.
,
Dhall
,
A.
, and
Datta
,
A. K.
,
2011
, “
Modeling Transport in Porous Media With Phase Change: Applications to Food Processing
,”
ASME J. Heat Transfer
,
133
(
3
), p.
031010
.
4.
Würger
,
A.
,
2009
, “
Molecular-Weight Dependent Thermal Diffusion in Dilute Polymer Solutions
,”
Phys. Rev. Lett.
,
102
(
7
), pp.
1
4
.
5.
You
,
Y.
,
2002
, “
A Global Ocean Climatological Atlas of the Turner Angle: Implications for Double-Diffusion and Water–Mass Structure
,”
Deep-Sea Res., Part I
,
49
(
11
), pp.
2075
2093
.
6.
Suárez
,
F.
,
Tyler
,
S. W.
, and
Childress
,
A. E.
,
2010
, “
A Fully Coupled, Transient Double-Diffusive Convective Model for Salt-Gradient Solar Ponds
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1718
1730
.
7.
Montel
,
F.
,
1993
, “
Phase Equilibria Needs for Petroleum Exploration and Production Industry
,”
Fluid Phase Equilib.
,
84
(
C
), pp.
343
367
.
8.
Srinivasan
,
S.
, and
Saghir
,
M. Z.
,
2011
, “
Experimental Approaches to Study Thermodiffusion—A Review
,”
Int. J. Therm. Sci.
,
50
(
7
), pp.
1125
1137
.
9.
Platten
,
J. K.
,
2006
, “
The Soret Effect: A Review of Recent Experimental Results
,”
J. Appl. Mech.
,
73
(
5
), pp.
5
15
.
10.
Faissat
,
B.
,
Knudsen
,
K.
,
Stenby
,
E.
, and
Montel
,
F.
,
1994
, “
Fundamental Statements About Thermal Diffusion for a Multicomponent Mixture in a Porous Medium
,”
Fluid Phase Equilib.
,
100
(
C
), pp.
209
222
.
11.
Ziad Saghir
,
M.
, and
Eslamian
,
M.
,
2009
, “
A Critical Review of Thermodiffusion Models: Role and Significance of the Heat of Transport and the Activation Energy of Viscous Flow
,”
J. Non-Equilib. Thermodyn.
,
34
(
2
), pp.
97
131
.
12.
Kohler
,
W. E.
, and
Halbritter
,
J.
,
1975
, “
Kinetic Theory of Thermal Diffusion in a Magnetic Field
,”
Z. Naturforsch.
,
30
(
9
), pp.
1114
1121
.
13.
Kox
,
A. J.
,
Van Leeuwen
,
W. A.
, and
De Groot
,
S. R.
,
1976
, “
On Relativistic Kinetic Gas Theory. XVII. Diffusion and Thermal Diffusion in a Binary Mixture of Hard Spheres
,”
Physica A
,
84
(
1
), pp.
165
174
.
14.
Dougherty
,
E. L.
, and
Drickamer
,
H. G.
,
1955
, “
A Theory of Thermal Diffusion in Liquids
,”
J. Chem. Phys.
,
23
(
2
), pp.
295
309
.
15.
Guy
,
A.
,
1986
, “
Prediction of Thermal Diffusion in Binary Mixtures of Nonelectrolyte Liquids by the Use of Nonequilibrium Thermodynamics
,”
Int. J. Thermophys.
,
7
(
3
), pp.
563
572
.
16.
Firoozabadi
,
A.
,
Ghorayeb
,
K.
, and
Shukla
,
K.
,
2000
, “
Theoretical Model of Thermal Diffusion Factors in Multicomponent Mixtures
,”
AIChE J.
,
46
(
5
), pp.
892
900
.
17.
Eslamian
,
M.
, and
Saghir
,
M. Z.
,
2012
, “
Estimation of Thermodiffusion Coefficients in Ternary Associating Mixtures
,”
Can. J. Chem. Eng.
,
90
(
4
), pp.
936
943
.
18.
Srinivasan
,
S.
, and
Saghir
,
M. Z.
,
2011
, “
Thermodiffusion in Ternary Hydrocarbon Mixtures: Part 1—n-Dodecane/Isobutylbenzene/Tetralin
,”
J. Non-Equilib. Thermodyn.
,
36
(
3
), pp.
243
258
.
19.
Srinivasan
,
S.
, and
Saghir
,
M. Z.
,
2012
, “
Thermodiffusion in Ternary Hydrocarbon Mixtures: Part 2—n-decane/isobutylbenzene/tetralin
,”
J. Non-Equilib. Thermodyn.
,
37
(
1
), pp.
99
113
.
20.
Mortimer
,
R.
, and
Eyring
,
H.
,
1980
, “
Elementary Transition State Theory of Soret and Dufour Effects
,”
Proc. Natl. Acad. Sci.
,
77
(
4
), pp.
1728
1731
.
21.
Bielenberg
,
J.
, and
Brenner
,
H.
,
2005
, “
A Hydrodynamic/Brownian Motion Model of Thermal Diffusion in Liquids
,”
Physica A
,
356
(
2–4
), pp.
279
293
.
22.
Brenner
,
H.
,
2006
, “
Elementary Model of Thermal Diffusion in Liquids and Gases
,”
Phys. Rev. E
,
74
(
3
), p.
036306
.
23.
Kempers
,
L. M.
,
1989
, “
A Thermodynamic Theory of the Soret Effect in a Multicomponent Liquid
,”
J. Chem. Phys.
,
90
(
11
), pp.
6541
6548
.
24.
Srinivasan
,
S.
, and
Saghir
,
M. Z.
,
2010
, “
Significance of Equation of State and Viscosity on the Thermodiffusion Coefficients of a Ternary Hydrocarbon Mixture
,”
J. High Temp. High Pressures
,
39
(
1
), pp.
65
81
.
25.
Srinivasan
,
S.
, and
Saghir
,
M. Z.
,
2014
, “
Computational Evaluation of Micro-Scale and Macro-Scale Error Sources in a Thermodiffusive Cell
,”
J. Comput. Sci.
,
5
(
5
), pp.
767
776
.
26.
Srinivasan
,
S.
, and
Saghir
,
M. Z.
,
2011
, “
Impact of the Vibrations on Soret Separation in Binary and Ternary Mixtures
,”
Fluid Dyn. Mater. Process.
,
7
(
2
), pp.
201
216
.
27.
Srinivasan
,
S.
, and
Saghir
,
M. Z.
,
2010
, “
Thermo-Solutal-Diffusion in High Pressure Liquid Mixtures in the Presence of Micro-Vibrations
,”
Int. J. Therm. Sci.
,
49
(
9
), pp.
1613
1624
.
28.
Parsa
,
A.
,
Srinivasan
,
S.
, and
Saghir
,
M. Z.
,
2013
, “
Impact of Density Gradients on the Fluid Flow Inside a Vibrating Cavity Subjected to Soret Effect
,”
Can. J. Chem. Eng.
,
91
(
3
), pp.
550
559
.
29.
Srinivasan
,
S.
, and
Saghir
,
M. Z.
,
2014
, “
Predicting Thermodiffusion in an Arbitrary Binary Liquid Hydrocarbon Mixtures Using Artificial Neural Networks
,”
Neural Comput. Appl.
,
25
(
5
), pp.
1193
1203
.
30.
Srinivasan
,
S.
, and
Saghir
,
M. Z.
,
2014
, “
A Neurocomputing Model to Calculate the Thermo-Solutal Diffusion in Liquid Hydrocarbon mixtures
,”
Neural Comput. Appl.
,
24
(
2
), pp.
287
299
.
31.
Srinivasan
,
S.
, and
Saghir
,
M. Z.
,
2012
, “
Estimating the Thermotransport Factor in Binary Metal Alloys Using Artificial Neural Networks
,”
Appl. Math. Model.
,
37
(
5
), pp.
2850
2869
.
32.
Schoen
,
M.
, and
Hoheisel
,
C.
,
1984
, “
The Mutual Diffusion Coefficient D12 in Liquid Model Mixture—A Molecular Dynamics Study based on Lennard–Jones (12-6) Potentials. II. Lorentz–Berthelot Mixtures
,”
Mol. Phys.
,
52
(
5
), pp.
1029
1042
.
33.
Babaei
,
H.
,
Keblinski
,
P.
, and
Khodadadi
,
J. M.
,
2012
, “
Equilibrium Molecular Dynamics Determination of Thermal Conductivity for Multi-Component Systems
,”
J. Appl. Phys.
,
112
(
5
), p.
054310
.
34.
Alaghemandi
,
M.
,
Algaer
,
E.
,
Bohm
,
M. C.
, and
Muller-Plathe
,
F.
,
2009
, “
The Thermal conductivity and Thermal Rectification of Carbon Nanotubes Studied Using Reverse Non-Equilibrium Molecular Dynamics Simulations
,”
Nanotechnology
,
20
(
11
), p.
115704
.
35.
Wheeler
,
D. R.
,
Fuller
,
N. G.
, and
Rowley
,
R. L.
,
1997
, “
Non-Equilibrium Molecular Dynamics Simulation of the Shear Viscosity of Liquid Methanol: Adaptation of Ewald Sum to Lees–Edwards Boundary Conditions
,”
Mol. Phys.
,
92
(
1
), pp.
55
62
.
36.
Guevara-Carrion
,
G.
,
Vrabec
,
J.
, and
Hasse
,
H.
,
2012
, “
Prediction of Transport Properties of Liquid Ammonia and Its Binary Mixture With Methanol by Molecular simulation
,”
Int. J. Thermophys.
,
33
(
3
), pp.
449
468
.
37.
MacGowan
,
D.
, and
Evans
,
D. J.
,
1986
, “
Heat and Mass Transfer in Binary Liquid Mixtures
,”
Phys. Rev. A
,
34
(
3
), pp.
2133
2141
.
38.
Paolini
,
G. V.
, and
Ciccotti
,
G.
,
1987
, “
Cross Thermotransport in Liquid Mixtures by Non-Equilibrium Molecular Dynamics
,”
Phys. Rev. A
,
35
(
12
), pp.
5156
5166
.
39.
Evans
,
D. J.
,
1982
, “
Homogeneous NEMD Algorithm for Thermal Conductivity—Application of Non-Canonical Linear Response Theory
,”
Phys. Lett. A
,
91
(
9
), pp.
457
460
.
40.
HafskJold
,
B.
,
Ikeshoji
,
T.
, and
Ratkje
,
S. K.
,
1993
, “
On the Molecular Mechanism of Thermal Diffusion in Liquids
,”
Mol. Phys.
,
80
(
6
), pp.
1389
1412
.
41.
Ikeshoji
,
T.
, and
HafskJold
,
B.
,
1994
, “
Non-Equilibrium Molecular Dynamics Calculation of Heat Conduction Liquid and Through Liquid–Gas Interface
,”
Mol. Phys.
,
81
(
2
), pp.
251
261
.
42.
Müller-Plathe
,
F.
,
1997
, “
A Simple Non-Equilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity
,”
J. Chem. Phys.
,
106
(
14
), pp.
6082
6085
.
43.
Müller-Plathe
,
F.
, and
Reith
,
D.
,
1999
, “
Cause and Effect Reversed in Non-Equilibrium Molecular Dynamics: An Easy Route to Transport Coefficients
,”
Comput. Theor. Polym. Sci.
,
9
(
3–4
), pp.
203
209
.
44.
Galliero
,
G.
,
Srinivasan
,
S.
, and
Saghir
,
M. Z.
,
2010
, “
Estimation of Thermodiffusion in Ternary Alkane Mixtures Using Molecular Dynamics Simulations and an Irreversible Thermodynamic Theory
,”
High Temp. High Pressure
,
38
, pp.
315
328
.
45.
Galliero
,
G.
,
Bugel
,
M.
,
Duguay
,
B.
, and
Montel
,
F.
,
2007
, “
Mass Effect on Thermodiffusion Using Molecular Dynamics
,”
J. Non-Equilib. Thermodyn.
,
32
(
3
), pp.
251
258
.
46.
Galliero
,
G.
,
Colombani
,
J.
,
Bopp
,
P. A.
,
Duguay
,
B.
,
Caltagirone
,
J. P.
, and
Montel
,
F.
,
2006
Thermal Diffusion in Micropores by Molecular Dynamics Computer Simulations
,”
Physica A
,
361
(
2
), pp.
494
510
.
47.
Colombani
,
J.
,
Galliero
,
G.
,
Duguay
,
B.
,
Caltagirone
,
J. P.
,
Montel
,
F.
, and
Bopp
,
P. A.
,
2003
, “
Molecular Dynamics Study of Thermal Diffusion in a Binary Mixture of Alkanes Trapped in a Slit Pore
,”
Philos. Mag.
,
83
(
17–18
), pp.
2087
2095
.
48.
Galliero
,
G.
, and
Volz
,
S.
,
2008
, “
Thermodiffusion in Model Nanofluids by Molecular Dynamics Simulations
,”
J. Chem. Phys.
,
128
(
6
), p.
064505
.
49.
Galliero
,
G.
, and
Montel
,
F.
,
2008
, “
Nonisothermal Gravitational Segregation by Molecular Dynamics Simulations
,”
Phys. Rev. E
,
78
(
4
), p.
041203
.
50.
De Groot
,
S. R.
, and
Mazur
,
P.
,
1961
,
Thermodiffusion in Multicomponent Mixtures
,
Dover Publications
,
New York
, Chap. 4.
51.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2007
,
Transport Phenomena
,
Wiley
, New York, Chap. 24.
52.
Gallero
,
G.
,
Dugyay
,
B.
,
Caltagirone
,
J. P.
, and
Montel
,
F.
,
2003
, “
On Thermal Diffusion in Binary and Ternary Lennard–Jones Mixtures by Non-Equilibrium Molecular Dynamics
,”
Philos. Mag.
,
83
(
18
), pp.
2097
2108
.
53.
Allen
,
M. P.
, and
Tildesley
,
D. J.
,
1987
,
Computer Simulation of Liquids
,
Oxford Science Publication
, Oxford, UK, Chap. 1.
54.
NIST, 2007, “
NIST Thermophysical Properties of Hydrocarbon Mixtures Database
,” SUPERTRAPP Software, Version 3.2, National Institute of Standards and Technology, Gaithersburg, MD.
55.
Miller
,
N. A. T.
,
Daivis
,
P. J.
,
Snook
,
I. K.
, and
Todd
,
B. D.
,
2013
, “
Computation of Thermodynamic and Transport Properties to Predict Thermophoretic Effects in an Argon–Krypton Mixture
,”
J. Chem. Phys.
,
139
(
14
), p.
144504
.
56.
Srinivasan
,
S.
,
de Mezquia
,
D. A.
,
Bou-Ali
,
M. M.
, and
Saghir
,
M. Z.
,
2011
, “
Thermodiffusion and Molecular Diffusion in Binary n-Alkane Mixtures: Experiments and Numerical Analysis
,”
Philos. Mag.
,
91
(
34
), pp.
4332
4344
.
57.
Perronace
,
A.
,
Leppla
,
C.
,
Leroy
,
F.
,
Rousseau
,
B.
, and
Wiegand
,
S.
,
2002
, “
Soret and Mass Diffusion Measurements and Molecular Dynamics Simulations of N-Pentane–N-Decane Mixtures
,”
J. Chem. Phys.
,
116
(
9
), pp.
3718
3729
.
58.
Polyakov
,
P.
,
Müller
,
F.
, and
Wiegand
,
S.
,
2008
, “
Reverse Nonequilibrium Molecular Dynamics Calculation of the Soret Coefficient in Liquid Heptane/Benzene Mixtures
,”
J. Phys. Chem. B
,
112
(
47
), pp.
14999
15004
.
59.
Furtado
,
F. A.
,
Silveira
,
A. J.
,
Abreu
,
C. A.
, and
Tavares
,
F. W.
,
2015
, “
Non-Equilibrium Molecular Dynamics Used to Obtain Soret Coefficients of Binary Hydrocarbon Mixtures
,”
Br. J. Chem. Eng.
,
32
(
3
), pp.
683
698
.
You do not currently have access to this content.