A numerical simulation technique based on elastic asperity deformation is presented to analyze real surface contact and pressure distributions in sliding wear. The calculations have been applied to experimentally produced surfaces whose topography has been determined using an atomic force microscope. A variational approach is applied to minimize the stored energy in the contact, which determines contact area without additional iteration. Two-dimensional FIR digital filter techniques are used and an FFT procedure is used to improve the efficiency of the filter implementation. The model is used to obtain the pressure distribution, real contact area, and the distribution of real contact area under sliding conditions either parallel or perpendicular to the grinding lay. The calculated results of real contact stress at different stages of wear are given. The calculated and experimental results suggest that the stress distribution of real contact follows an exponential function. The contact stress distribution index β governs the stress distribution form and reflects the performance of the frictional components in sliding wear. The proportion of plastic contact deformation ψ is also related to β; therefore, reflecting the frictional property in sliding wear. The experimental and calculated results show that the smaller frictional coefficient and more homogeneous distribution of stress occur when the sliding direction is parallel rather than perpendicular to the grinding-lay direction.

1.
Bowden, F. P., and Tabor, D., 1957, Friction and Lubrication of Solids, Clarendon, Oxford.
2.
Ju
,
Y.
, and
Zheng
,
L.
,
1992
, “
A Full Numerical Solution for the Elastic Contact of Three-Dimensional Real Rough Surfaces
,”
Wear
,
157
, pp.
151
161
.
3.
Komvopoulos
,
K.
,
Saka
,
N.
, and
Suh
,
N. P.
,
1987
, “
The Role of Hard Layers in Lubricated and Dry Sliding
,”
ASME J. Tribol.
,
109
, pp.
223
231
.
4.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surface
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.
5.
Whitehouse
,
D. J.
, and
Archard
,
J. F.
,
1970
, “
The Properties of Random Surfaces of Significance in Their Contact
,”
Proc. R. Soc. London, Ser. A
,
316
, pp.
97
121
.
6.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Keogh
,
G. P.
,
1979
, “
Strongly Anisotropic Rough Surfaces
,”
ASME J. Lubr. Technol.
,
101
, pp.
15
20
.
7.
McCool
,
J. I.
,
1986
, “
Comparison of Models for the Contact of Rough Surfaces
,”
Wear
,
107
, pp.
37
60
.
8.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
, pp.
257
263
.
9.
Polycarpou
,
A. A.
, and
Etsion
,
I.
,
1999
, “
Analytical Approximations in Modelling Contact Rough Surfaces
,”
ASME J. Tribol.
,
121
, pp.
234
239
.
10.
Francis
,
H. A.
,
1982
, “
A Finite Surface Element Model for Plane-Strain Elastic Contact
,”
Wear
,
76
, pp.
221
245
.
11.
Webster
,
M. N.
, and
Sayles
,
R. S.
,
1986
, “
A Numerical Model for the Elastic Frictionless Contact of Real Rough Surfaces
,”
ASME J. Tribol.
,
108
, pp.
314
320
.
12.
Ren
,
N.
, and
Lee
,
S. C.
,
1994
, “
The Effect of Surface Roughness and Topography on the Contact Behavior of Elastic Bodies
,”
ASME J. Tribol.
,
116
, pp.
804
811
.
13.
Poon
,
C. Y.
, and
Sayles
,
R. S.
,
1994
, “
Numerical Contact Model of a Smooth Ball on an Anisotropic Rough Surface
,”
ASME J. Tribol.
,
116
, pp.
194
201
.
14.
Tian
,
X.
, and
Bhushan
,
B.
,
1996
, “
A Numerical Three-Dimensional Model for the Contact of Rough Surfaces by Variational Principle
,”
ASME J. Tribol.
,
118
, pp.
33
42
.
15.
Lee
,
S. C.
, and
Ren
,
N.
,
1996
, “
Behavior of Elastic-Plastic Rough Surface Contact Areas Affected by Surface Topography, Load and Material Hardness
,”
STLE Tribol. Trans.
39
, No.
1
, pp.
67
74
.
16.
Poon
,
C. Y.
, and
Bhushan
,
B.
,
1996
, “
Numerical Contact and Stiction Analyses of Gaussian Isotropic Surfaces for Magnetic Head Slider/Disk Contact
,”
Wear
,
202
, pp.
68
82
.
17.
Chilamakuri
,
S. K.
, and
Bhushan
,
B.
,
1998
, “
Contact Analysis of Non-Gaussian Random Surfaces
,”
Proc. Inst. Mech. Eng., Part J
,
212
pp.
19
32
.
18.
Kalker, J. J., 1990, Three-Dimensional Elastic Bodies in Rolling Contact, Kluwer, Dordrecht.
19.
Johnson, K. L., 1985, Contact Mechanics, 1st Edition, Cambridge University Press.
20.
Duvaut, G., and Lions, J. L., 1972, Les ine´quation en me´canique et en physique, Paris, Dunod.
21.
Richards, T. H., 1977, Energy Methods in Stress Analysis, Ellis Horwood Series in Engineering Science, Ellis Horwood, Ltd., Chichester, England.
22.
Timshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, 3rd Ed., McGraw-Hill, N. Y.
23.
Love
,
A. E. H.
,
1929
, “
The Stress Produced in a Semi-infinite Solid by Pressure on Part of the Boundary
,”
Philos. Trans. R. Soc. London, Ser. A
,
228
, pp.
377
420
.
24.
Komvopoulos
,
K.
,
Saka
,
N.
, and
Suh
,
N. P.
,
1986
, “
Plowing Friction in Dry and Lubricated Metal Sliding
,”
ASME J. Tribol.
,
108
, pp.
301
313
.
25.
Tabor, D., 1951, The Hardness of Metals, Oxford University Press.
26.
Komvopoulos
,
K.
,
Saka
,
N.
, and
Suh
,
N. P.
,
1985
, “
The Mechanism of Friction Boundary Lubrication
,”
ASME J. Tribol.
,
107
, pp.
452
462
.
27.
Suh
,
N. P.
, and
Sin
,
H.-C.
,
1981
, “
The Genesis of Friction
,”
Wear
,
69
, pp.
91
114
.
28.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1988
, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
,
110
, pp.
57
63
.
29.
Tian
,
H.
, and
Matsudaira
,
T.
,
1993
, “
The Role of Relative Humidity, Surface Roughness and Liquid Build-up on Static Friction Behavior of the Head/Disk Interface
,”
ASME J. Tribol.
,
115
, pp.
28
35
.
30.
Etsion
,
I.
, and
Amit
,
M.
,
1993
, “
The Effect of Small Normal Loads on the Static Friction Coefficient for Very Smooth Surfaces
,”
ASME J. Tribol.
,
115
, pp.
406
410
.
31.
Polycarpou
,
A. A.
, and
Etsion
,
I.
,
1998
, “
Static Friction of Contacting Real Surfaces in the Presence of Sub-Boundary Lubrication
,”
ASME J. Tribol.
,
120
, pp.
296
303
.
32.
Polycarpou
,
A. A.
, and
Etsion
,
I.
,
1998
, “
Comparison of the Static Friction Subboundary Lubrication Model with Experimental Measurements on Thin-Film Disks
,”
STLE Tribol. Trans.
41
, No.
2
, pp.
217
224
.
You do not currently have access to this content.