A modification of the Elrod and Ng turbulence model is presented. The order of magnitude of the Reynolds number in thin lubricant films varies between and For Reynolds numbers higher than the fluid flow becomes turbulent. It is well accepted in lubrication to use a zero-equation turbulence model of the type developed by Constantinescu (1962, ASME J. Basic Eng., 84(1), pp. 139–151), Ng (1964, ASLE Trans., 7, pp. 311–321), Ng and Pan (1965, ASME J. Basic Eng., 87, pp. 675–688), Elrod and Ng (1967, ASME J. Lubr. Technol., 89, pp. 346–362), or Hirs (1973, ASME J. Lubr. Technol., 95, pp. 137–146). The Elrod and Ng approach is certainly the most efficient for combined pressure and shear flows where the Reynolds number is above This paper proposes a modification of the Elrod and Ng model in order to ensure a good correlation with experimental data obtained with low Reynolds number turbulent flows. The present model, coupled with a scaling factor for taking into account the transition to turbulence, is therefore accurate for all of the typical Reynolds number values recorded in lubrication. The model is then applied to hydrostatic noncontacting face seals, which usually operate at Reynolds numbers varying from to The accuracy of the model is shown for this particular application of radial rotating flow. A special study is made of the transition to turbulence. The results are compared with those obtained using the initial Elrod and Ng model. The axial stiffness coefficient and the stability threshold are significantly affected by the turbulence model.
Skip Nav Destination
Article navigation
January 2005
Technical Papers
A Modified Turbulence Model for Low Reynolds Numbers: Application to Hydrostatic Seals
Noe¨l Brunetie`re
Noe¨l Brunetie`re
Laboratoire de Me´canique des Solides, UMR CNRS 6610, Universite´ de Poitiers, S.P.2M.I., BP 30179, 86962 Futuroscope Chasseneuil Cedex, France
Search for other works by this author on:
Noe¨l Brunetie`re
Laboratoire de Me´canique des Solides, UMR CNRS 6610, Universite´ de Poitiers, S.P.2M.I., BP 30179, 86962 Futuroscope Chasseneuil Cedex, France
Manuscript received March 3, 2004; revision received August 26, 2004. Review conducted by: L. San Andre´s.
J. Tribol. Jan 2005, 127(1): 130-140 (11 pages)
Published Online: February 7, 2005
Article history
Received:
March 3, 2004
Revised:
August 26, 2004
Online:
February 7, 2005
Citation
Brunetie`re, N. (February 7, 2005). "A Modified Turbulence Model for Low Reynolds Numbers: Application to Hydrostatic Seals ." ASME. J. Tribol. January 2005; 127(1): 130–140. https://doi.org/10.1115/1.1829721
Download citation file:
Get Email Alerts
Related Articles
Finite Element Solution of Inertia Influenced Flow in Thin Fluid Films
J. Tribol (October,2007)
TEHD Lubrication of Mechanical Face Seals in Stable Tracking Mode: Part 2—Parametric Study
J. Tribol (July,2003)
The Effect of Inertia on Radial Flows—Application to Hydrostatic Seals
J. Tribol (July,2006)
Related Proceedings Papers
Related Chapters
Cavitating Structures at Inception in Turbulent Shear Flow
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Gear Lubricants and Lubrication—Tomorrow's Requirements
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Wear and Contact Fatigue Properties of a Novel Lubricant Additive
Bearing and Transmission Steels Technology