A modification of the Elrod and Ng turbulence model is presented. The order of magnitude of the Reynolds number in thin lubricant films varies between 102 and 105. For Reynolds numbers higher than 103, the fluid flow becomes turbulent. It is well accepted in lubrication to use a zero-equation turbulence model of the type developed by Constantinescu (1962, ASME J. Basic Eng., 84(1), pp. 139–151), Ng (1964, ASLE Trans., 7, pp. 311–321), Ng and Pan (1965, ASME J. Basic Eng., 87, pp. 675–688), Elrod and Ng (1967, ASME J. Lubr. Technol., 89, pp. 346–362), or Hirs (1973, ASME J. Lubr. Technol., 95, pp. 137–146). The Elrod and Ng approach is certainly the most efficient for combined pressure and shear flows where the Reynolds number is above 104. This paper proposes a modification of the Elrod and Ng model in order to ensure a good correlation with experimental data obtained with low Reynolds number turbulent flows. The present model, coupled with a scaling factor for taking into account the transition to turbulence, is therefore accurate for all of the typical Reynolds number values recorded in lubrication. The model is then applied to hydrostatic noncontacting face seals, which usually operate at Reynolds numbers varying from 103 to 104. The accuracy of the model is shown for this particular application of radial rotating flow. A special study is made of the transition to turbulence. The results are compared with those obtained using the initial Elrod and Ng model. The axial stiffness coefficient and the stability threshold are significantly affected by the turbulence model.

1.
Constantinescu
,
V. N.
,
1962
, “
Analysis of Bearings Operating in Turbulent Regime
,”
ASME J. Basic Eng.
,
84
(
1
), pp.
139
151
.
2.
Ng
,
C. W.
,
1964
, “
Fluid Dynamic Foundation of Turbulent Lubrication Theory
,”
ASLE Trans.
,
7
, pp.
311
321
.
3.
Ng
,
C. W.
, and
Pan
,
C. H. T.
,
1965
, “
A Linearized Turbulent Lubrication Theory
,”
ASME J. Basic Eng.
,
87
, pp.
675
688
.
4.
Elrod
,
H. G.
, and
Ng
,
C. W.
,
1967
, “
A Theory for Turbulent Films and Its Application to Bearings
,”
ASME J. Lubr. Technol.
,
89
, pp.
346
362
.
5.
Hirs
,
G. G.
,
1973
, “
Bulk Flow Theory for Turbulence in Lubricant Films
,”
ASME J. Lubr. Technol.
,
95
, pp.
137
146
.
6.
Bouard
,
L.
,
Fillon
,
M.
, and
Fre^ne
,
J.
,
1996
, “
Comparison Between Three Turbulent Models—Application to Thermohydrodynamic Performances of Tilting-Pad Journal Bearings
,”
Tribol. Int.
,
29
(
1
), pp.
11
18
.
7.
Szeri, A. Z., 1998, Fluid Film Lubrication—Theory & Design, Cambridge University Press, Cambridge, UK, Chap. 7.
8.
Wang
,
X.
,
Zhang
,
Z.
, and
Sun
,
M.
,
2000
, “
A Comparison of Flow Fields Predicted by Various Turbulent Lubrication Models With Existing Measurements
,”
ASME J. Tribol.
,
122
(
2
), pp.
475
477
.
9.
Patel
,
V. C.
, and
Head
,
M. R.
,
1969
, “
Some Observations on Skin Friction and Velocity Profiles in Fully Developed Pipe and Channel Flows
,”
J. Fluid Mech.
,
38
, pp.
181
201
.
10.
Huffman
,
G. D.
, and
Bardshaw
,
P.
,
1972
, “
A Note on Von Karman’s Constants in Low Reynolds Number Turbulent Flows
,”
J. Fluid Mech.
,
53
(
1
), pp.
181
201
.
11.
Tieu
,
A. K.
, and
Kosasih
,
P. B.
,
1992
, “
An Expression of Reynolds Stresses in Turbulent Lubrication Theory
,”
ASME J. Tribol.
,
114
(
1
), pp.
57
60
.
12.
Brunetiere
,
N.
,
Tournerie
,
B.
, and
Fre^ne
,
J.
,
2002
, “
Influence of Fluid Flow Regimes on Performances of Non-Contacting Liquid Face Seals
,”
ASME J. Tribol.
,
124
(
3
), pp.
515
523
.
13.
Pai
,
S. I.
,
1953
, “
On Turbulent Flow Between Parallel Plates
,”
ASME J. Appl. Mech.
,
20
, pp.
109
114
.
14.
Dean
,
R. B.
,
1974
, “
Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Duct Flow
,”
ASME J. Fluids Eng.
,
100
, pp.
215
223
.
15.
El Telbany
,
M. M. M.
, and
Reynolds
,
A. J.
,
1980
, “
Velocity Distributions in Plane Turbulent Channel Flows
,”
J. Fluid Mech.
,
100
, pp.
1
29
.
16.
Johansson
,
A. V.
, and
Alfredsson
,
P. H.
,
1982
, “
On the Structure of Turbulent Channel Flow
,”
J. Fluid Mech.
,
122
, pp.
295
314
.
17.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulence Statistics in Fully Developed at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.
18.
Wei
,
T.
, and
Willmarth
,
W. W.
,
1989
, “
Reynolds Number Effects on the Structure of a Turbulent Channel Flow
,”
J. Fluid Mech.
,
204
, pp.
57
95
.
19.
Niederschulte
,
M. A.
,
Adrian
,
R. J.
, and
Hanratty
,
T. J.
,
1990
, “
Measurements of Turbulent Flow at Low Reynolds Numbers
,”
Exp. Fluids
,
9
, pp.
222
230
.
20.
Antonia
,
R. A.
,
Teitel
,
M.
,
Kim
,
J.
, and
Browne
,
L. W. B.
,
1992
, “
Low-Reynolds Turbulent Channel Flow
,”
J. Fluid Mech.
,
236
, pp.
579
605
.
21.
Gu¨nther
,
A.
,
Papavassiliou
,
D. V.
,
Warholic
,
M. D.
, and
Hanratty
,
T. J.
,
1998
, “
Turbulent Flow in a Channel at Low Reynolds Number
,”
Exp. Fluids
,
25
, pp.
503
511
.
22.
Wada
,
S.
, and
Hashimoto
,
H.
,
1979
, “
Turbulent Lubrication Theory Using the Frictional Law
,”
Bull. JSME
,
22
(
164
), pp.
249
256
.
23.
Robertson, J. M., 1959, “On Turbulent Plane-Couette Flow,” Proc. of 6th Midwestern Conf. Fluid Mech., Austin, Texas, pp. 169–182.
24.
Aydin
,
E. M.
, and
Leutheusser
,
H. J.
,
1991
, “
Plane-Couette Flow Between Smooth and Rough Walls
,”
Exp. Fluids
,
11
, pp.
302
312
.
25.
Bech
,
K. H.
,
Tillmark
,
N.
,
Alfredsson
,
P. H.
, and
Andersson
,
H. I.
,
1995
, “
An Investigation of Turbulent Plane Couette Flow
,”
J. Fluid Mech.
,
286
, pp.
291
325
.
26.
Papavassiliou
,
D. V.
, and
Hanratty
,
T. J.
,
1997
, “
Interpretation of Large-Scale Structures Observed in a Turbulent Plane Couette Flow
,”
Int. J. Heat Fluid Flow
,
18
, pp.
55
69
.
27.
Schilchting, H., 1960, Boundary Layer Theory, McGraw-Hill, New York.
28.
Mayer
,
E.
,
1989
, “
Performance of Rotating High Duty Nuclear Seals
,”
Lubr. Eng.
,
45
(
5
), pp.
275
286
.
29.
Yasuna
,
J. A.
, and
Hughes
,
W. F.
,
1994
, “
Squeeze Film Dynamics of Two-Phase Seals. Part II: Turbulent Flow
,”
ASME J. Tribol.
,
116
(
3
), pp.
479
488
.
30.
Lin
,
J. F.
, and
Yao
,
C. C.
,
1996
, “
Hydrodynamic Lubrication of Face Seal in a Turbulent Flow Regime
,”
ASME J. Tribol.
,
118
(
3
), pp.
589
601
.
31.
Daily
,
D. W.
, and
Neece
,
R. E.
,
1960
, “
Chamber Dimension Effects on Induced Flow and Frictional Resistance of Enclosed Rotating Disks
,”
ASME J. Basic Eng.
,
82
, pp.
217
232
.
32.
Owen, J. M., and Rogers, R. H., 1989, Flow and Heat Transfer in Rotating-Disc Systems—Volume 1—Rotor—Stator Systems, Research Studies Press Ltd., Wiley, New York.
33.
Tabatabai
,
M.
, and
Pollard
,
A.
,
1987
, “
Turbulence in Radial Flow Between Disks at Medium and Low Reynolds Numbers
,”
J. Fluid Mech.
,
185
, pp.
483
502
.
34.
Chambers
,
F. W.
,
Murphy
,
H. D.
, and
McEligot
,
D. M.
,
1983
, “
Laterally Converging Flow. Part 2. Temporal Wall Shear Stress
,”
J. Fluid Mech.
,
127
, pp.
403
428
.
35.
Sirivat
,
A.
,
1991
, “
Stability Experiment of Flow Between a Stationary and a Rotating Disk
,”
Phys. Fluids A
,
3
(
11
), pp.
2664
2671
.
36.
Gauthier
,
G.
,
Gondret
,
P.
, and
Rabaud
,
M.
,
1999
, “
Axisymmetric Propagating Vortices in Flow Between a Stationary and a Rotating Disk Enclosed by a Cylinder
,”
J. Fluid Mech.
,
386
, pp.
105
126
.
37.
Schouveiler
,
L.
,
Le Gal
,
P.
, and
Chauve
,
M. P.
,
2001
, “
Instabilities of the Flow Between a Rotating and a Stationary Disk
,”
J. Fluid Mech.
,
443
, pp.
329
350
.
38.
Cros
,
A.
, and
Le Gal
,
P.
,
2002
, “
Spatiotemporal Intermittency in the Torsional Couette Flow Between a Rotating and a Stationary Disk
,”
Phys. Fluids
,
14
(
11
), pp.
3755
3765
.
39.
Harada, M., and Tsukazaki, J., 2004, “On the Transition From Laminar to Turbulence in the Fluid Film of Thrust Bearings,” Proc. of 14th International Colloquium Tribology, TAE, Stuggart, Ostfilderm, Germany, Vol. II, pp. 1025–1030.
40.
Rerbal, C., 1980, “Contribution to the Study of Hydrodynamic Thrust Bearings in Laminar and Non Laminar Flow,” Ph.D. thesis, University Claude Bernard Lyon I (in French).
41.
Fre^ne
,
J.
,
1977
, “
Tapered Land Thrust Bearing Operating in Both Turbulent and Laminar Regimes
,”
ASLE Trans.
,
21
(
3
), pp.
243
249
.
42.
Lundblah
,
A.
, and
Johansson
,
A. V.
,
1991
, “
Direct Numerical Simulation of Turbulent Spots in Plane Couette Flow
,”
J. Fluid Mech.
,
229
, pp.
499
511
.
43.
Tillmark
,
N.
, and
Alfredsson
,
P. H.
,
1992
, “
Experiments on Transition in Plane Couette Flow
,”
J. Fluid Mech.
,
235
, pp.
89
102
.
44.
Dauchot
,
O.
, and
Daviaud
,
F.
,
1995
, “
Streamwise Vortices in Plane Couette Flow
,”
Phys. Fluids
,
7
(
5
), pp.
901
903
.
45.
Moller
,
P. S.
,
1963
, “
Radial Flow Without Swirl Between Parallel Discs
,”
Aeronaut. Q.
,
14
, pp.
163
184
.
46.
Bakke
,
E.
,
Kreider
,
J. F.
, and
Kreith
,
F.
,
1973
, “
Turbulent Source Flow Between Parallel Stationary and Co-Rotating Disks
,”
J. Fluid Mech.
,
58
, pp.
209
231
.
47.
Murphy
,
H. D.
,
Chambers
,
F. W.
, and
McEligot
,
D. M.
,
1983
, “
Laterally Converging Flow. Part 1. Mean Flow
,”
J. Fluid Mech.
,
127
, pp.
379
401
.
48.
Mutama
,
K. R.
, and
Iacovides
,
H.
,
1993
, “
The Investigation of Developing Flow and Heat Transfer in a Long Converging Duct
,”
ASME J. Heat Transfer
,
115
(
4
), pp.
897
903
.
49.
Singh
,
A.
,
Vyas
,
B. D.
, and
Powle
,
U. S.
,
1999
, “
Investigations on Inward Flow Between Two Stationary Parallel Disks
,”
Int. J. Heat Fluid Flow
,
20
, pp.
395
401
.
50.
Debuchy
,
R.
,
Dyment
,
A.
,
Muhe
,
H.
, and
Micheau
,
P.
,
1998
, “
Radial Inflow Between a Rotating and a Stationary Disc
,”
Eur. J. Mech. B/Fluids
,
17
(
6
), pp.
791
810
.
51.
Zirkelback
,
N.
, and
San Andre´s
,
L.
,
1996
, “
Bulk-Flow Model for the Transition to Turbulence Regime in Annular Seals
,”
Tribol. Trans.
,
39
(
4
), pp.
835
842
.
52.
Ransom
,
D.
, and
San Andre´s
,
L.
,
1999
, “
Identification of Force Coefficients From a Gas Annular Seal, Effect of Transition Flow Regime to Turbulence
,”
Tribol. Trans.
,
42
(
3
), pp.
487
494
.
You do not currently have access to this content.