Under normal operation, a rotor levitated by magnetic bearings will rotate without making contact with any stator component. However, there are a number of circumstances that may lead to temporary or permanent loss of levitation. These include full rotor drop events arising from power loss, momentary fault conditions, sudden changes in unbalance, high levels of base acceleration, and other aerodynamically induced force inputs. The spinning rotor will come into dynamic contact with an auxiliary bearing. Highly localized and transient temperatures will arise from frictional heating over the dynamically varying contact area. Rotor dynamic contact forces are predicted for a range of initial conditions leading to combinations of bounce and rub motion on the auxiliary bearing. The transient heat flux from the contact area is then ascertained. A transient thermal Green’s function is developed in a form that is effective over short or long time scales and local to the source. This enables the transient thermal response of an auxiliary bearing to be assessed for a range of dynamic contact conditions. Auxiliary bearings consisting of fixed bushings and free to rotate inner races are analyzed. The results show that significant localized contact temperatures may arise from each contact event, which would accumulate for multiple contact cases. The methodology will be of relevance for the life prediction of auxiliary bearing designs.

1.
Newkirk
,
B. L.
, 1926, “
Shaft Rubbing
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
48
, pp.
830
832
.
2.
Dimarogonas
,
A. D.
, 1970, Packing Rub Effect in Rotating Machinery, dissertation, Rensselaer Polytechnic Institute, Troy, New York.
3.
Keogh
,
P. S.
, and
Morton
,
P. G.
, 1994, “
The Dynamic Nature of Rotor Thermal Bending due to Unsteady Lubricant Shearing within a Bearing
,”
Proc. R. Soc. London, Ser. A
1364-5021,
445
, pp.
273
290
.
4.
Zhang
,
W.
, 1988, “
Dynamic Instability of Multi-Degree-of-Freedom Flexible Rotor Systems due to Full Annular Rub
,” Paper C252/88,
Proceedings 4th International Conference on Vibrations in Rotating Machinery
, September 13-15, Edinburgh, Heriot-Watt University, UK, pp.
305
310
.
5.
Bartha
,
A. R.
, 1998, “
Dry Friction Induced Backward Whirl: Theory and Experiment
,”
Proceedings 5th IFToMM Conference on Rotor Dynamics
, September 7-10, Darmstadt, pp.
756
767
.
6.
Johnson
,
D. C.
, 1962, “
Synchronous Whirl of a Vertical Shaft Having Clearance in One Bearing
,”
J. Mech. Eng. Sci.
0022-2542,
4
(
1
), pp.
85
93
.
7.
Black
,
H. F.
, 1968, “
Interaction of a Whirling Rotor with a Vibrating Stator Across a Clearance Annulus
,”
J. Mech. Eng. Sci.
0022-2542,
10
(
1
), pp.
1
12
.
8.
Childs
,
D. W.
, 1979, “
Rub Induced Parametric Excitation in Rotors
,”
ASME J. Mech. Des.
0161-8458,
101
, pp.
640
644
.
9.
Muszynska
,
A.
, 1984, “
Partial Lateral Rotor to Stator Rubs
,”
Proceedings 3rd International Conference on Vibrations in Rotating Machinery
, September 11-13, University of York, York, UK, pp.
327
335
.
10.
Ehrich
,
F. F.
, 1988, “
High Order Subharmonic Response of High Speed Rotors in Bearing Clearance
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
110
, pp.
9
16
.
11.
Gonsalves
,
D. H.
,
Neilson
,
R. D.
, and
Barr
,
A. D. S.
, 1995, “
A Study of the Response of a Discontinuously Nonlinear Rotor System
,”
Nonlinear Dyn.
0924-090X,
7
, pp.
451
470
.
12.
Wang
,
X.
, and
Noah
,
S. T.
, 1998, “
Nonlinear Dynamics of a Magnetically Supported Rotor on Safety Auxiliary Bearings
,”
ASME J. Vibr. Acoust.
0739-3717,
120
, pp.
596
606
.
13.
Wu
,
F.
, and
Flowers
,
G. T.
, 1993, “
An Experimental Study of the Influence of Disk Flexibility and Rubbing on Rotordynamics
,” Proc. ASME Conference on Vibrations of Rotating Systems, September 19-22, Albuquerque, NM, pp.
19
26
.
14.
Lawen
,
J. L.
, and
Flowers
,
G. T.
, 1997, “
Synchronous Dynamics of a Coupled Shaft/Bearing/Housing System with Auxiliary Support from a Clearance Bearing
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
119
, pp.
430
435
.
15.
Lawen
,
J. L.
, and
Flowers
,
G. T.
, 1999, “
Interaction Dynamics Between a Flexible Rotor and an Auxiliary Clearance Bearing
,”
ASME J. Vibr. Acoust.
0739-3717,
121
, pp.
183
189
.
16.
Xie
,
H.
,
Flowers
,
G. T.
,
Feng
,
L.
, and
Lawrence
,
C.
, 1999, “
Steady-State Dynamic Behavior of a Flexible Rotor with Auxiliary Support from a Clearance Bearing
,”
ASME J. Vibr. Acoust.
0739-3717,
121
, pp.
78
83
.
17.
Fumagalli
,
M.
,
Varadi
,
P.
, and
Schweitzer
,
G.
, 1994, “
Impact Dynamics of High Speed Rotors in Retainer Bearings and Measurement Concepts
,”
Proceedings 4th International Symposium on Magnetic Bearings
, August 23-26, ETH, Zurich, pp.
239
244
.
18.
Fumagalli
,
M.
, and
Schweitzer
,
G.
, 1996, “
Measurements on a Rotor Contacting its Housing
,”
Proceedings 6th International Conference on Vibrations in Rotating Machinery
, September 9-12, University of Oxford, UK, pp.
779
788
.
19.
Kirk
,
R. G.
,
Swanson
,
E. E.
,
Kavarana
,
F. H.
, and
Wang
,
X.
, 1994, “
Rotor Drop Test Stand for AMB Rotating Machinery, Part 1: Description of Test Stand and Initial Results
,”
Proceedings 4th International Symposium on Magnetic Bearings
, August 22-26, ETH, Zurich, pp.
207
212
.
20.
Kirk
,
R. G.
, 1999, “
Evaluation of AMB Turbomachinery Auxiliary Bearings
,”
ASME J. Vibr. Acoust.
0739-3717,
121
, pp.
156
161
.
21.
Schmied
,
J.
, and
Pradetto
,
J. C.
, 1992, “
Behavior of a One Ton Rotor Being Dropped into Auxiliary Bearings
,”
Proceedings 3rd International Symp. on Magnetic Bearings
, July 29-31, Alexandria, VA, pp.
145
156
.
22.
Markert
,
R.
, and
Wegener
,
G.
, 1998, “
Transient Vibration of Elastic Rotors in Retainer Bearings
,”
Proceedings ISROMAC-7
, February 22-26, Honolulu, Hawaii, pp.
764
774
.
23.
Ecker
,
H.
, 1998, “
Nonlinear Stability Analysis of a Single Mass Rotor Contacting a Rigid Auxiliary Bearing
,”
Proceedings 5th IFToMM Conference on Rotor Dynamics
, September 7-10, Darmstadt, pp.
790
801
.
24.
Cuesta
,
E. N.
,
Medina
,
L. U.
,
Rastelli
,
V. R.
,
Montbrun
,
N. I.
, and
Diaz
,
S. E.
, 2003, “
A Simple Kinematic Model for the Behavior of a Magnetically Levitated Rotor Operating in Overload Regime
,”
Proceedings ASME Turbo Expo
, June 16-19, Atlanta, GA.
25.
Keogh
,
P. S.
, and
Cole
,
M. O. T.
, 2003, “
Rotor Vibration with Auxiliary Bearing Contact in Magnetic Bearing Systems, Part I: Synchronous Dynamics
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
217
, pp.
377
392
.
26.
Blok
,
H.
, 1937, “
Theoretical Study of Temperature Rise at Surfaces of Actual Contact Under Oiliness Conditions
,”
Proc. Inst. Mech. Eng.
0020-3483,
2
, pp.
222
235
.
27.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1960,
Conduction of Heat in Solids
, 2nd ed.,
Oxford University Press
.
28.
Abramowitz
,
M.
, and
Stegun
,
I. A.
, 1965,
Handbook of Mathematical Functions
,
Dover
, New York.
29.
Tian
,
X.
, and
Kennedy
,
F. E.
, 1994, “
Maximum and Average Flash Temperatures in Sliding Contacts
,”
ASME J. Tribol.
0742-4787,
116
, pp.
167
174
.
30.
Cole
,
M. O. T.
,
Keogh
,
P. S.
, and
Burrows
,
C. R.
, 2002, “
Dynamic Behaviour of Rolling Element Auxiliary Bearings Following Rotor Impact
,”
ASME J. Tribol.
0742-4787,
124
, pp.
406
413
.
You do not currently have access to this content.