Abstract

Ball and rolling element bearings are perhaps the most widely used components in industrial machinery. They are used to support load and allow relative motion inherent in the mechanism to take place. Subsurface originated spalling has been recognized as one of the main modes of failure for rolling contact fatigue (RCF) of bearings. In the past few decades a significant number of investigators have attempted to determine the physical mechanisms involved in rolling contact fatigue of bearings and proposed models to predict their fatigue lives. In this paper, some of the most widely used RCF models are reviewed and discussed, and their limitations are addressed. The paper also presents the modeling approaches recently proposed by the authors to develop life models and better understanding of the RCF.

1.
Voskamp
,
A. P.
,
Osterlund
,
R.
,
Becker
,
P. C.
, and
Vingsbo
,
O.
, 1980, “
Gradual Changes in Residual Stress and Microstructure During Contact Fatigue in Ball Bearings
,”
Met. Technol. (London)
0307-1693,
7
, pp.
14
21
.
2.
Osterlund
,
R.
, and
Vingsbo
,
O.
, 1980, “
Phase Changes in Fatigued Ball Bearings
,”
Metall. Trans. A
0360-2133,
11
, pp.
701
707
.
3.
Voskamp
,
A. P.
, 1985, “
Material Response to Rolling Contact Loading
,”
ASME J. Tribol.
0742-4787,
107
, pp.
359
366
.
4.
Voskamp
,
A. P.
, 1998, “
Fatigue and Material Response in Rolling Contact
,”
Bearing Steels: Into the 20th Century
, ASTM STP No.
1328
,
ASTM Special Technical Publication
,
West Conshohocken, PA
, pp.
152
166
.
5.
Voskamp
,
A. P.
, and
Mittemeijer
,
E. J.
, 1997, “
The Effect of the Changing Microstructure on the Fatigue Behavior During Cyclic Rolling Contact Loading
,”
Z. Metallkd.
0044-3093,
88
, pp.
310
319
.
6.
Hahn
,
G. T.
,
Bhargava
,
V.
, and
Chen
,
Q.
, 1990, “
The Cyclic Stress-Strain Properties, Hysteresis Loop Shape, and Kinematic Hardening of Two High-Strength Bearing Steels
,”
Metall. Trans. A
0360-2133,
21
, pp.
653
665
.
7.
Voskamp
,
A. P.
, 2002, “
Microstructural Stability and Bearing Performance
,”
Bearing Steel Technology
, ASTM STP No.
1419
,
ASTM Special Technical Publication
,
West Conshohocken, PA
, pp.
443
456
.
8.
Voskamp
,
A. P.
,
Nierlich
,
W.
, and
Hengerer
,
F.
, 1997, “
X-Ray Diffraction Provides Answers to Bearing Failures
,”
SKF Evolution
,
4
, pp.
25
31
.
9.
Voskamp
,
A. P.
, and
Mittemeijer
,
E. J.
, 1997, “
State of Residual Stress Induced by Cyclic Rolling Contact Loading
,”
Mater. Sci. Technol.
0267-0836,
13
, pp.
431
438
.
10.
Turteltaub
,
S.
, and
Suiker
,
A. S. J.
, 2005, “
Transformation-Induced Plasticity in Ferrous Alloys
,”
J. Mech. Phys. Solids
0022-5096,
53
, pp.
1747
1788
.
11.
Voskamp
,
A. P.
, and
Mittemeijer
,
E. J.
, 1996, “
Crystallographic Preferred Orientation Induced by Cyclic Rolling Contact Loading
,”
Metall. Mater. Trans. A
1073-5623,
27
, pp.
3445
3465
.
12.
Littmann
,
W. E.
, and
Widner
,
R. L.
, 1966, “
Propagation of Contact Fatigue From Surface and Sub-Surface Origins
,”
ASME J. Basic Eng.
0021-9223,
88
, pp.
624
636
.
13.
Littmann
,
W. E.
, 1969, “
The Mechanism of Contact Fatigue
,” NASA, Special Report No. SP-237.
14.
Lou
,
B.
,
Han
,
L.
,
Lu
,
Z.
,
Liu
,
S.
, and
Shen
,
F.
, 1990, “
The Rolling Contact Fatigue Behaviors in Carburized and Hardened Steel
,”
Fatigue 90: Proceedings of the Fourth International Conference on Fatigue and Fatigue Thresholds
, Honolulu, HI,
H.
Kitagawa
and
T.
Tanaka
, eds., pp.
627
632
.
15.
Bower
,
A. F.
, 1988, “
The Influence of Crack Face Friction and Trapped Fluid on Surface Initiated Rolling Contact Fatigue Cracks
,”
ASME J. Tribol.
0742-4787,
110
, pp.
704
711
.
16.
Nelias
,
D.
,
Dumont
,
M. L.
,
Champiot
,
F.
,
Vincent
,
A.
,
Girodin
,
D.
,
Fougeres
,
R.
, and
Flamand
,
L.
, 1999, “
Role of Inclusions, Surface Roughness and Operating Conditions on Rolling Contact Fatigue
,”
ASME J. Tribol.
0742-4787,
121
(
2
), pp.
240
251
.
17.
Hertz
,
H.
, 1882, “
On the Contact of Elastic Solids
,”
J. Reine Angew. Math.
0075-4102,
92
, pp.
156
171
.
18.
McEwen
,
E.
, 1949, “
Stresses in Elastic Cylinders in Contact Along a Generatrix
,”
Philos. Mag.
1478-6435,
40
, pp.
454
459
.
19.
Poritsky
,
H.
, 1950, “
Stresses and Deflections of Cylindrical Bodies in Contact
,”
ASME J. Appl. Mech.
0021-8936,
17
, pp.
191
201
.
20.
Smith
,
J. O.
, and
Liu
,
C. K.
, 1953, “
Stresses Due to Tangential and Normal Loads on an Elastic Solid
,”
ASME J. Appl. Mech.
0021-8936,
20
, pp.
157
166
.
21.
Sackfield
,
A.
, and
Hills
,
D. A.
, 1983, “
Some Useful Results in the Classical Hertz Contact Problem
,”
J. Strain Anal.
0022-4758,
18
, pp.
101
105
.
22.
Sackfield
,
A.
, and
Hills
,
D. A.
, 1983, “
Some Useful Results in the Tangentially Loaded Hertz Contact Problem
,”
J. Strain Anal.
0022-4758,
18
, pp.
107
110
.
23.
Sackfield
,
A.
, and
Hills
,
D. A.
, 1983, “
A Note on the Hertz Contact Problem: Correlation of Standard Formulae
,”
J. Strain Anal.
0022-4758,
18
, pp.
195
197
.
24.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University
,
Cambridge
.
25.
McDiarmid
,
D. L.
, 1991, “
A General Criterion for High Cycle Multi-Axial Fatigue Failure
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
14
, pp.
429
453
.
26.
McDiarmid
,
D. L.
, 1994, “
A Shear Stress Based Critical-Plane Criterion of Multiaxial Fatigue Failure for Design and Life Prediction
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
17
, pp.
1475
1484
.
27.
Susmel
,
L.
, and
Lazzarin
,
P.
, 2002, “
A Bi-Parametric Wohler Curve for High Cycle Multi-Axial Fatigue Assessment
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
25
(
1
), pp.
63
78
.
28.
Papadopoulos
,
I. V.
, 1995, “
A High-Cycle Fatigue Criterion Applied in Biaxial and Triaxial Out-of-Phase Stress Conditions
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
18
, pp.
79
91
.
29.
Brown
,
M. W.
, and
Miller
,
K. J.
, 1973, “
A Theory for Fatigue Failure Under Multiaxial Stress-Strain Conditions
,”
Proc. Inst. Mech. Eng.
0020-3483,
187
, pp.
745
755
.
30.
Socie
,
D. F.
, and
Shield
,
T. W.
, 1984, “
Mean Stress Effects in Biaxial Fatigue of Inconel 718
,”
ASME J. Eng. Mater. Technol.
0094-4289,
106
, pp.
227
232
.
31.
Socie
,
D. F.
, 1987, “
Multiaxial Fatigue Damage Models
,”
ASME J. Eng. Mater. Technol.
0094-4289,
109
, pp.
292
298
.
32.
Palmgren
,
A.
, 1945,
Ball and Roller Bearing Engineering
,
SKF Industries
,
Philadelphia, PA
.
33.
Lundberg
,
G.
, and
Palmgren
,
A.
, 1947, “
Dynamic Capacity of Rolling Bearings
,”
Acta Polytech. Scand., Mech. Eng. Ser.
0001-687X,
1
(
3
), pp.
1
52
.
34.
Lundberg
,
G.
, and
Palmgren
,
A.
, 1952, “
Dynamic Capacity of Roller Bearings
,”
Acta Polytech. Scand., Mech. Eng. Ser.
0001-687X,
2
(
4
), pp.
96
127
.
35.
ISO
, 1989, “
Rolling Bearings—Dynamic Load Ratings and Rating Life
,” Draft International Standard ISO/DIS 281, ISO, Geneva, Switzerland.
36.
Chiu
,
Y. P.
,
Tallian
,
T. E.
, and
McCool
,
J. I.
, 1971, “
An Engineering Model of Spalling Fatigue Failure in Rolling Contact—The Subsurface Model
,”
Wear
0043-1648,
17
, pp.
433
446
.
37.
Ioannides
,
E.
, and
Harris
,
T. A.
, 1985, “
A New Fatigue Life Model for Rolling Bearings
,”
ASME J. Tribol.
0742-4787,
107
, pp.
367
378
.
38.
Ioannides
,
E.
,
Bergling
,
G.
, and
Gabelli
,
A.
, 1999, “
An Analytical Formulation for the Life of Rolling Bearings
,”
Acta Polytech. Scand., Mech. Eng. Ser.
0001-687X,
137
, pp.
58
60
.
39.
Harris
,
T. A.
, and
Barnsby
,
R. M.
, 2001, “
Life Ratings for Ball and Roller Bearings
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
215
, pp.
577
595
.
40.
Schlicht
,
H.
,
Schreiber
,
E.
, and
Zwirlein
,
O.
, 1986, “
Fatigue and Failure Mechanism of Bearings
,”
I Mech E Conf. Publ.
0144-0799,
1
, pp.
85
90
.
41.
Tallian
,
T. E.
, 1992, “
Simplified Contact Fatigue Life Prediction Model—Part I: Review of Published Models
,”
ASME J. Tribol.
0742-4787,
114
, pp.
207
213
.
42.
Tallian
,
T. E.
, 1992, “
Simplified Contact Fatigue Life Prediction Model—Part II: New Model
,”
ASME J. Tribol.
0742-4787,
114
, pp.
214
222
.
43.
Zaretsky
,
E. V.
, 1994, “
Design for Life, Plan for Death
,”
Mach. Des.
0024-9114,
66
(
15
), pp.
55
59
.
44.
Harris
,
T. A.
, and
McCool
,
J.
, 1996, “
On the Accuracy of Rolling Bearing Fatigue Life Prediction
,”
ASME J. Tribol.
0742-4787,
118
, pp.
297
310
.
45.
Kudish
,
I. I.
, and
Burris
,
K. W.
, 2000, “
Modern State of Experimentation and Modeling in Contact Fatigue Phenomenon: Part II—Analysis of the Existing Statistical Mathematical Models of Bearing and Gear Fatigue Life. New Statistical Model of Contact Fatigue
,”
Tribol. Trans.
1040-2004,
43
(
2
), pp.
293
301
.
46.
Shao
,
E.
,
Huang
,
X.
,
Wang
,
C.
,
Zhu
,
Y.
, and
Chen
,
Q.
, 1987, “
A Method of Detecting Rolling Contact Crack Initiation and the Establishment of Crack Propagation Curves
,”
Tribol. Trans.
1040-2004,
31
(
1
), pp.
6
11
.
47.
Leng
,
X.
,
Chen
,
Q.
, and
Shao
,
E.
, 1988, “
Initiation and Propagation of Case Crushing Cracks in Rolling Contact Fatigue
,”
Wear
0043-1648,
122
, pp.
33
43
.
48.
Otsuka
,
A.
,
Sugawara
,
H.
, and
Shomura
,
M.
, 1996, “
A Test Method for Mode II Fatigue Crack Growth Relating to a Model for Rolling Contact Fatigue
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
19
(
10
), pp.
1265
1275
.
49.
Miyashita
,
Y.
,
Yoshimura
,
Y.
,
Xu
,
J. -Q.
,
Horikoshi
,
M.
, and
Mutoh
,
Y.
, 2003, “
Subsurface Crack Propagation in Rolling Contact Fatigue of Sintered Alloy
,”
JSME Int. J., Ser. A
1340-8046,
46
(
3
), pp.
341
347
.
50.
Shimizu
,
S.
, 2002, “
Fatigue Limit Concept and Life Prediction Model for Rolling Contact Machine Elements
,”
Tribol. Trans.
1040-2004,
45
(
1
), pp.
39
46
.
51.
Kotzalas
,
M. N.
, 2005, “
Statistical Distribution of Tapered Roller Bearing Fatigue Lives at High Levels of Reliability
,”
ASME J. Tribol.
0742-4787,
127
(
4
), pp.
865
870
.
52.
Keer
,
L. M.
, and
Bryant
,
M. D.
, 1983, “
A Pitting Model for Rolling Contact Fatigue
,”
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
198
205
.
53.
Zhou
,
R. S.
,
Cheng
,
H. S.
, and
Mura
,
T.
, 1989, “
Micropitting in Rolling and Sliding Contact Under Mixed Lubrication
,”
ASME J. Tribol.
0742-4787,
111
, pp.
605
613
.
54.
Zhou
,
R. S.
, 1993, “
Surface Topography and Fatigue Life of Rolling Contact Bearings
,”
Tribol. Trans.
1040-2004,
36
, pp.
329
340
.
55.
Bhargava
,
V.
,
Hahn
,
G. T.
, and
Rubin
,
C. A.
, 1990, “
Rolling Contact Deformation, Etching Effects and Failure of High Strength Steels
,”
Metall. Trans. A
0360-2133,
21
, pp.
1921
1931
.
56.
Cheng
,
W.
,
Cheng
,
H. S.
,
Mura
,
T.
, and
Keer
,
L. M.
, 1994, “
Micromechanics Modeling of Crack Initiation Under Contact Fatigue
,”
ASME J. Tribol.
0742-4787,
116
, pp.
2
8
.
57.
Cheng
,
W.
, and
Cheng
,
H. S.
, 1995, “
Semi-Analytical Modeling of Crack Initiation Dominant Contact Fatigue for Roller Bearings
,”
Proceedings of the 1995 Joint ASME/STLE Tribology Conference
, Orlando, FL.
58.
Vincent
,
A.
,
Lormand
,
G.
,
Lamagnere
,
P.
,
Gosset
,
L.
,
Girodin
,
D.
,
Dudragne
,
G.
, and
Fougeres
,
R.
, 1998, “
From White Etching Areas Formed Around Inclusions to Crack Nucleation in Bearing Steels Under Rolling Contact
,”
Bearing Steels: Into the 21st Century
, ASTM STP No.
1327
,
J.
Hoo
and
W.
Green
, eds.,
ASTM Special Technical Publication
,
West Conshohocken, PA
, pp.
109
123
.
59.
Xu
,
G.
, and
Sadeghi
,
F.
, 1996, “
Spall Initiation and Propagation Due to Debris Denting
,”
Wear
0043-1648,
201
, pp.
106
116
.
60.
Lormand
,
G.
,
Meynaud
,
G.
,
Vincent
,
A.
,
Baudry
,
G.
,
Girodin
,
D.
, and
Dudragne
,
G.
, 1998, “
From Cleanliness to Rolling Fatigue Life of Bearings—A New Approach
,”
Bearing Steels: Into the 21st Century
, ASTM STP No.
1327
,
J.
Hoo
and
W.
Green
, eds.,
ASTM Special Technical Publication
,
West Conshohocken, PA
, pp.
55
69
.
61.
Ashby
,
M. F.
, and
Hallam
,
S. D.
, 1986, “
The Fracture of Brittle Solids Containing Small Cracks Under Compressive Stress States
,”
Acta Mater.
1359-6454,
34
, pp.
497
510
.
62.
Melander
,
A.
, 1997, “
A Finite Element Study of Short Cracks With Different Inclusion Types Under Rolling Contact Fatigue Load
,”
Int. J. Fatigue
0142-1123,
19
(
1
), pp.
13
24
.
63.
Lormand
,
G.
,
Piot
,
D.
,
Vincent
,
A.
,
Baudry
,
G.
,
Daguier
,
P.
,
Girodin
,
G.
, and
Dudragne
,
G.
, 2002, “
Application of a New Physically Based Model to Determine the Influence of Inclusion Population and Loading Conditions on the Distribution of Bearing Lives
,”
Proceedings of the ASTM Symposium Bearing Steel Technology
, ASTM Publication No. STP1419, pp.
493
508
.
64.
Girodin
,
D.
,
Dudragne
,
G.
,
Courbon
,
J.
, and
Vincent
,
A.
, 2006, “
Statistical Analysis of Nonmetallic Inclusions for the Estimation of Rolling Contact Fatigue Range and Quality Control of Bearing Steel
,”
J. ASTM Int.
1546-962X,
3
, pp.
1
16
.
65.
Harris
,
T. A.
, and
Yu
,
W. K.
, 1999, “
Lundberg-Palmgren Fatigue Theory: Considerations of Failure Stress and Stressed Volume
,”
ASME J. Tribol.
0742-4787,
121
, pp.
85
89
.
66.
Jiang
,
Y.
, and
Sehitoglu
,
H.
, 1999, “
A Model for Rolling Contact Failure
,”
Wear
0043-1648,
224
, pp.
38
49
.
67.
Sehitoglu
,
H.
, and
Jiang
,
Y.
, 1992, “
Fatigue and Stress Analyses of Rolling Contact
,” College of Engineering, University of Illinois at Urbana-Champaign, Technical Report No. 161.
68.
Ringsberg
,
J. W.
, 2001, “
Life Prediction of Rolling Contact Fatigue Crack Initiation
,”
Int. J. Fatigue
0142-1123,
23
(
7
), pp.
575
586
.
69.
Liu
,
Y.
,
Stratman
,
B.
, and
Mahadevan
,
S.
, 2006, “
Fatigue Crack Initiation Life Prediction of Railroad Wheels
,”
Int. J. Fatigue
0142-1123,
28
, pp.
747
756
.
70.
Liu
,
Y.
, and
Mahadevan
,
S.
, 2007, “
A Unified Multiaxial Fatigue Damage Model for Isotropic and Anisotropic Materials
,”
Int. J. Fatigue
0142-1123,
29
, pp.
347
359
.
71.
Styri
,
H.
, 1951, “
Fatigue Strength of Ball Bearing Races and Heat-Treated 52100 Steel Specimens
,” Proc. of the American Society for Testing and Materials, ASTM Special Technical Publication, Philadelphia, PA, No.
51
, pp.
682
700
.
72.
Nishioka
,
K.
, 1957, “
On the Effect of Inclusion Upon the Fatigue Strength
,”
J. Soc. Mater. Sci. Jpn.
0514-5163,
6
, pp.
382
385
.
73.
Murakami
,
Y.
,
Kodama
,
S.
, and
Konuma
,
S.
, 1989, “
Quantitative Evaluation of Effects of Non-Metallic Inclusions on Fatigue Strength of High Strength Steels. I: Basic Fatigue Mechanism and Evaluation of Correlation Between the Fatigue Fracture Stress and the Size and Location of Non-Metallic Inclusions
,”
Int. J. Fatigue
0142-1123,
11
(
5
), pp.
291
298
.
74.
Bohmer
,
H. J.
, 1993, “
Rolling Contact Fatigue
,”
Research—A Basis for Products of the Future
, Publication No. WL40205EA,
FAG Kugelfischer Georg Schafer KGaA
,
Schweinfurt, Germany
, pp.
37
45
.
75.
Bohmer
,
H. J.
, 1993, “
A New Approach to Determine the Effect of Nonmetallic Inclusions on Material Behavior in Rolling Contact
,”
Creative Use of Bearing Steels
, ASTM STP No.
1195
,
J. J. C.
Hoo
, ed.,
American Society for Testing and Materials
,
Philadelphia, PA
, pp.
211
221
.
76.
Martin
,
J. A.
,
Borgese
,
S. F.
, and
Eberhardt
,
A. D.
, 1966, “
Microstructural Alterations of Rolling-Bearing Steel Undergoing Cyclic Stressing
,”
ASME J. Basic Eng.
0021-9223,
88
, pp.
555
567
.
77.
O’Brien
,
J. L.
, and
King
,
A. H.
, 1966, “
Electron Microscopy of Stress-Induced Structural Alterations Near Inclusions in Bearing Steels
,”
ASME J. Basic Eng.
0021-9223,
88
, pp.
568
572
.
78.
Schlicht
,
H.
,
Schreiber
,
E.
, and
Zwirlein
,
O.
, 1988, “
Effects of Material Properties on Bearing Steel Fatigue Strength
,”
Effects of Steel Manufacturing Processes on the Quality of Bearing Steels
, ASTM STP No.
987
,
J. C. C.
Hoo
, ed.,
ASTM Special Technical Pubication
,
Philadelphia, PA
, pp.
81
101
.
79.
Forster
,
N.
,
Ogden
,
W. P.
, and
Trivedi
,
H.
, 2008, “
Rolling Contact Fatigue Life and Spall Propagation of AISI M50, M50NiL, and ASI 52100, Part III: Metallurgical Investigation
,”
STLE Tribol. Trans.
1040-2004, in press.
80.
Zaretsky
,
E. V.
,
Parker
,
R. J.
, and
Anderson
,
W. J.
, 1969, “
A Study of Residual Stress Induced During Rolling
,”
ASME J. Lubr. Technol.
0022-2305,
91
, pp.
314
319
.
81.
Chen
,
L.
,
Chen
,
Q.
, and
Shao
,
E.
, 1989, “
Study on Initiation and Propagation Angles of Sub-Surface Cracks in GCr15 Bearing Steel Under Rolling Contact
,”
Wear
0043-1648,
133
, pp.
205
218
.
82.
Chen
,
Q.
,
Shao
,
E.
,
Zhao
,
D.
,
Guo
,
J.
, and
Fan
,
Z.
, 1991, “
Measurement of the Critical Size of Inclusions Initiating Contact Fatigue Cracks and Its Application in Bearing Steel
,”
Wear
0043-1648,
147
, pp.
285
294
.
83.
Yoshioka
,
T.
, 1993, “
Detection of Rolling Contact Subsurface Fatigue Cracks Using Acoustic Emission Technique
,”
Lubr. Eng.
0024-7154,
49
, pp.
303
308
.
84.
Liu
,
M.
, and
Sia
,
N.
, 1999, “
Microstructure of Bearing Grade Silicon Nitride
,”
J. Mater. Res.
0884-2914,
14
(
12
), pp.
4621
4629
.
85.
Raje
,
N. N.
,
Sadeghi
,
F.
,
Rateick
,
R. G.
, Jr.
, and
Hoeprich
,
M. R.
, 2008, “
A Numerical Model for Life Scatter in Rolling Element Bearings
,”
ASME J. Tribol.
0742-4787,
130
(
1
), p.
011011
.
86.
Raje
,
N. N.
,
Sadeghi
,
F.
, and
Rateick
,
R. G.
, Jr.
, 2007, “
A Discrete Element Approach to Evaluate Stresses Due to Line Loading on an Elastic Half-Space
,”
Comput. Mech.
0178-7675,
40
(
3
), pp.
513
529
.
87.
Raje
,
N. N.
,
Sadeghi
,
F.
,
Rateick
,
R. G.
, Jr.
, and
Hoeprich
,
M. R.
, 2007, “
Evaluation of Stresses Around Inclusions in Hertzian Contacts Using the Discrete Element Method
,”
ASME J. Tribol.
0742-4787,
129
(
2
), pp.
283
291
.
88.
Jalalahmadi
,
B.
, and
Sadeghi
,
F.
, 2009, “
A Voronoi Finite Element Study of Fatigue Life Scatter in Rolling Contacts
,”
ASME J. Tribol.
0742-4787,
131
, p.
022203
.
89.
Harris
,
T. A.
, 2001,
Rolling Bearing Analysis
,
Wiley
,
New York
, p.
696
.
90.
Okabe
,
A.
, and
Boots
,
B.
, 1992,
Spatial Tessellations: Concepts and Applications of Voronoi Diagrams
,
Wiley
,
New York
.
91.
Moller
,
J.
, 1994,
Lectures Notes on Random Voronoi Tessellations
,
Springer
,
Berlin
.
92.
Raje
,
N. N.
,
Sadeghi
,
F.
, and
Rateick
,
R. G.
, Jr.
, 2008, “
A Statistical Damage Mechanics Model for Subsurface Initiated Spalling in Rolling Contacts
,”
ASME J. Tribol.
0742-4787,
130
(
4
), p.
042201
.
93.
Fajdiga
,
G.
,
Glodez
,
S.
, and
Kramar
,
J.
, 2007, “
Pitting Formation Due to Surface and Sub-Surface Initiated Fatigue Crack Growth in Contacting Mechanical Elements
,”
Wear
0043-1648,
262
, pp.
1217
1224
.
94.
Raje
,
N. N.
, and
Sadeghi
,
F.
, 2008, “
Statistical Numerical Modeling of Sub-Surface Initiated Spalling in Bearing Contacts
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501, to be published.
95.
Poplawski
,
J. V.
,
Peters
,
S. M.
, and
Zaretsky
,
E. V.
, 2001, “
Effect of Roller Profile on Cylindrical Roller Bearing Life Predication—Part I: Comparison of Bearing Life Theories
,”
Tribol. Trans.
1040-2004,
44
(
3
), pp.
339
350
.
You do not currently have access to this content.