A combined experimental and numerical method is developed to estimate the continuously evolving cyclic plastic strain amplitudes in plastically deformed subsurface regions of a case-hardened M50 NiL steel rod subjected to rolling contact fatigue (RCF) over several hundred million cycles. The subsurface hardness values measured over the entire plastically deformed regions and the elastoplastic von Mises stresses determined from the three-dimensional (3D) Hertzian contact finite element (FE) model have been used in conjunction with Neuber's rule to estimate the evolved cyclic plastic strain amplitudes at various points within the RCF-affected zone. The cyclic stress–strain plots developed as a function of case depth revealed that cyclic hardening exponent of the material is greater than the monotonic strain-hardening exponent. Effective S–N diagram for the RCF loading of the case-hardened steel has been presented and the effect of compressive mean stress on its fatigue strength has been explained using Haigh diagram. The compressive mean stress correction according to Haigh diagram predicts that the allowable fatigue strength of the steel increases by a factor of two compared to its fatigue limit before mean stress correction, thus potentially allowing the rolling element bearings to operate over several hundred billion cycles. The methodology presented here is generalized and can be adopted to obtain the constitutive response and S–N diagrams of both through- and case-hardened steels subjected to RCF.

References

1.
Bhattacharyya
,
A.
,
Subhash
,
G.
, and
Arakere
,
N.
,
2014
, “
Evolution of Subsurface Plastic Zone Due to Rolling Contact Fatigue of M-50 NiL Case Hardened Bearing Steel
,”
Int. J. Fatigue
,
59
, pp.
102
113
.10.1016/j.ijfatigue.2013.09.010
2.
McDowell
,
D. L.
,
1995
, “
Stress State Dependence of Cyclic Ratcheting Behavior of Two Rail Steels
,”
Int. J. Plast.
,
11
(
4
), pp.
397
421
.10.1016/S0749-6419(95)00005-4
3.
Vincent
,
A.
,
1998
, “
From White Etching Areas Around Inclusions to Crack Nucleation in Bearing Steels Under Rolling Contact Fatigue
,”
Bearing Steels: Into the 21st Century
,
J. J. C.
Hoo
and
W. B.
Green
, eds.,
American Society for Testing and Materials
,
West Conshohocken, PA
, pp.
109
123
.
4.
Voskamp
,
A. P.
,
Osterlund
,
R.
,
Becker
,
P. C.
, and
Vingsbo
,
O.
,
1980
, “
Gradual Changes in Residual Stress and Microstructure During Rolling Contact Fatigue in Ball Bearings
,”
Met. Technol.
,
7
(
1
), pp.
14
21
.10.1179/030716980803286676
5.
Vingsbo
,
O.
, and
Osterlund
,
R.
,
1980
, “
Phase Changes in Fatigued Ball Bearings
,”
Metall. Trans. A
,
11
(5), pp.
701
707
.10.1007/BF02661199
6.
Voskamp
,
A. P.
,
1985
, “
Material Response to Rolling Contact Loading
,”
ASME J. Tribol.
,
107
(
3
) pp.
359
364
.10.1115/1.3261078
7.
Voskamp
,
A. P.
, and
Mittemeijer
,
E. J.
,
1997
, “
The Effect of the Changing Microstructure on the Fatigue Behavior During Cyclic Rolling Contact Loading
,”
Z. Metallkd.
,
88
, pp.
310
319
.
8.
Barrow
,
A. T. W.
, and
Rivera-Díaz-del-Castillo
,
P. E. J.
,
2011
, “
Nanoprecipitation in Bearing Steels
,”
Acta Mater.
,
59
(
19
), pp.
7155
7167
.10.1016/j.actamat.2011.08.007
9.
Swahn
,
H.
,
Becker
,
P. C.
, and
Vingsbo
,
O.
,
1976
, “
Martensite Decay During Rolling Contact Fatigue in Ball Bearings
,”
Metall. Trans. A
,
7
(
8
), pp.
1099
1110
.10.1007/BF02656592
10.
Bhadeshia
,
H. K. D. H.
,
2012
, “
Steels for Bearings
,”
Prog. Mater. Sci.
,
57
(
2
), pp.
268
435
.10.1016/j.pmatsci.2011.06.002
11.
Steindorf
,
H.
,
Broszeit
,
E.
, and
Kloos
,
K. H.
,
1987
, “
Gefüge Und Anlaßverhalten Von Weißen Bändern
,”
Materialwiss. Werkstofftech.
,
18
(
12
), pp.
428
435
.10.1002/mawe.19870181210
12.
Reis
,
L.
,
Li
,
B.
, and
de Freitas
,
M.
,
2014
, “
A Multiaxial Fatigue Approach to Rolling Contact Fatigue in Railways
,”
Int. J. Fatigue
,
67
, pp.
191
202
.10.1016/j.ijfatigue.2014.02.001
13.
Reis
,
L.
,
Li
,
B.
, and
De Freitas
,
M.
,
2006
, “
Analytical and Experimental Studies on Fatigue Crack Path Under Complex Multi-Axial Loading
,”
Fatigue Fract. Eng. Mater. Struct.
,
29
(
4
), pp.
281
289
.10.1111/j.1460-2695.2006.01001.x
14.
Smith
,
K.
,
Topper
,
T.
, and
Watson
,
P.
,
1970
, “
A Stress–Strain Function for the Fatigue of Metals (Stress–Strain Function for Metal Fatigue Including Mean Stress Effect)
,”
J. Mater.
,
5
, pp.
767
778
.
15.
Stephens
,
R. I.
,
Fatemi
,
A.
, and
Stephens
,
R. R.
,
2000
,
Metal Fatigue in Engineering
,
Wiley
,
New York
.
16.
Klecka
,
M. A.
,
Subhash
,
G.
, and
Arakere
,
N. K.
,
2013
, “
Microstructure–Property Relationships in M50-NiL and P675 Case-Hardened Bearing Steels
,”
Tribol. Trans.
,
56
(
6
), pp.
1046
1059
.10.1080/10402004.2013.818393
17.
Glover
,
D.
,
1982
, “
A Ball–Rod Rolling Contact Fatigue Tester
,”
Rolling Contact Fatigue Testing of Bearing Steels
, Vol.
771
,
ASTM STP
,
West Conshohocken, PA
, pp.
107
125
.
18.
Branch
,
N. A.
,
Subhash
,
G.
, and
Arakere
,
N. K.
,
2011
, “
A New Reverse Analysis to Determine the Constitutive Response of Plastically Graded Case Hardened Bearing Steels
,”
Int. J. Solids Struct.
,
48
(
3–4
), pp.
584
591
.10.1016/j.ijsolstr.2010.10.023
19.
Klecka
,
M. A.
,
2011
,
Microstructure Property Relationships and Constitutive Response of Plastically Graded Case Hardened Steels
,
University of Florida
,
Gainesville, FL
.
20.
Johnson
,
K. L.
, and
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
21.
Kang
,
G.
, and
Liu
,
Y.
,
2008
, “
Uniaxial Ratchetting and Low-Cycle Fatigue Failure of the Steel With Cyclic Stabilizing or Softening Feature
,”
Mater. Sci. Eng.: A
,
472
(
1–2
), pp.
258
268
.10.1016/j.msea.2007.03.029
22.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
, and
Slack
,
T. S.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.10.1115/1.3209132
23.
Neuber
,
H.
,
1946
,
Theory of Notch Stresses
,
J. W.
Edwards
Co, Ann Arbor, MI.
24.
Tabor
,
D.
,
1970
, “
The Hardness of Solids
,”
Rev. Phys. Technol.
,
1
(
3
), p.
145
.10.1088/0034-6683/1/3/I01
25.
Boehmer
,
H.
,
Ebert
,
F.
, and
Trojahn
,
W.
,
1992
, “
M50NiL Bearing Material: Heat Treatment, Material Properties and Performance in Comparison With M50 and RBD
,”
Lubr. Eng.
,
48
(
1
), pp.
28
35
.
26.
Budynas
,
R. N. K.
,
2011
,
Shigley's Mechanical Engineering Design
,
McGraw-Hill
,
New York
.
27.
Harris
,
T.
, and
Barnsby
,
R.
,
2001
, “
Life Ratings for Ball and Roller Bearings
,”
Proc. Inst. Mech. Eng., Part J
,
215
(
6
), pp.
577
595
.10.1243/1350650011543817
28.
Fuchs
,
H.
,
1965
, “
A Set of Fatigue Failure Criteria
,”
ASME J. Fluids Eng.
,
87
(
2
), pp.
333
342
.10.1115/1.3650549
29.
Wehner
,
T.
, and
Fatemi
,
A.
,
1991
, “
Effects of Mean Stress on Fatigue Behaviour of a Hardened Carbon Steel
,”
Int. J. Fatigue
,
13
(
3
), pp.
241
248
.10.1016/0142-1123(91)90248-W
You do not currently have access to this content.