Three-dimensional (3D) wear of the clearance spherical joint in four-degrees-of-freedom (DOF) parallel mechanism is predicted based on Archard's wear model. The flexible moving platform is treated as thin plate element based on absolute nodal coordinate formulation (ANCF). The tangent frame is introduced to formulate the constraint equation of universal joint. One of the spherical joints is treated as clearance joint. The normal and tangential contact forces are calculated based on Flores contact force model and modified Coulomb friction model. In order to predict 3D wear, the normal contact force, tangential contact velocity, and eccentricity vector are decomposed in the global coordinate system. Simulation results show that 3D wear occurred in three directions are not uniform each other.

References

1.
Challen
,
J. M.
,
Oxley
,
P. L. B.
, and
Hockenhull
,
B. S.
,
1986
, “
Prediction of Archard's Wear Coefficient for Metallic Sliding Friction Assuming a Low Cycle Fatigue Wear Mechanism
,”
Wear
,
111
(
3
), pp.
275
288
.
2.
Flores
,
P.
,
Claro
,
J. C. P.
, and
Lankarani
,
H. M.
,
2006
, “
Dynamics of Multibody Systems With Spherical Clearance Joints
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
7
), pp.
240
247
.
3.
Ben Abdallah
,
M. A.
,
Khemili
,
I.
, and
Aifaoui
,
N.
,
2016
, “
Numerical Investigation of a Flexible Slider-Crank Mechanism With Multijoints With Clearance
,”
Multibody Syst. Dyn.
,
38
(
2
), pp.
173
199
.
4.
Dwivedy
,
S. K.
, and
Eberhard
,
P.
,
2006
, “
Dynamic Analysis of Flexible Manipulators, a Literature Review
,”
Mech. Mach. Theory
,
41
(
7
), pp.
749
777
.
5.
Wang
,
G.
, and
Liu
,
H.
,
2017
, “
Dynamic Analysis and Wear Prediction of Planar Five-Bar Mechanism Considering Multiflexible Links and Multiclearance Joints
,”
ASME J. Tribol.
,
139
(
5
), p.
051606
.
6.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2014
, “
Nonlinear Vibration and Dynamics of Ceramic on Ceramic Artificial Hip Joints: A Spatial Multibody Modelling
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1365
1377
.
7.
Flores
,
P.
, and
Lankarani
,
H. M.
,
2010
, “
Spatial Rigid-Multibody Systems With Lubricated Spherical Clearance Joints: Modeling and Simulation
,”
Nonlinear Dyn.
,
60
(
1–2
), pp.
99
114
.
8.
Akhadkar
,
N.
,
Acary
,
V.
, and
Brogliato
,
B.
,
2017
, “
Multibody Systems With 3D Revolute Joints With Clearances: An Industrial Case Study With an Experimental Validation
,”
Multibody Syst. Dyn.
, epub.
9.
Marques
,
F.
,
Isaac
,
F.
,
Dourado
,
N.
, and
Flores
,
P.
,
2017
, “
An Enhanced Formulation to Model Spatial Revolute Joints With Radial and Axial Clearances
,”
Mech. Mach. Theory
,
116
, pp.
123
144
.
10.
Cammarata
,
A.
,
2017
, “
A Novel Method to Determine Position and Orientation Errors in Clearance-Affected Overconstrained Mechanisms
,”
Mech. Mach. Theory
,
118
, pp.
247
264
.
11.
Zheng
,
E.
,
Zhu
,
R.
,
Zhu
,
S.
, and
Lu
,
X.
,
2015
, “
A Study on Dynamics of Flexible Multi-Link Mechanism Including Joints With Clearance and Lubrication for Ultra-Precision Presses
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
137
159
.
12.
Erkaya
,
S.
,
Do
,
S.
, and
Emrah
,
Ş.
,
2016
, “
Analysis of the Joint Clearance Effects on a Compliant Spatial Mechanism
,”
Mech. Mach. Theory J.
,
104
, pp.
255
273
.
13.
Sun
,
J.
,
Tian
,
Q.
, and
Hu
,
H.
,
2016
, “
Structural Optimization of Flexible Components in a Fl Exible Multibody System Modeled Via ANCF
,”
Mech. Mach. Theory
,
104
(
29
), pp.
59
80
.
14.
Tian
,
Q.
,
Zhang
,
Y.
,
Chen
,
L.
, and
Flores
,
P.
,
2009
, “
Dynamics of Spatial Flexible Multibody Systems With Clearance and Lubricated Spherical Joints
,”
Comput. Struct.
,
87
(
13–14
), pp.
913
929
.
15.
Tian
,
Q.
,
Lou
,
J.
, and
Mikkola
,
A.
,
2017
, “
A New Elastohydrodynamic Lubricated Spherical Joint Model for Rigid-Flexible Multibody Dynamics
,”
Mech. Mach. Theory
,
107
(
9
), pp.
210
228
.
16.
Mukras
,
S.
,
Kim
,
N. H.
,
Mauntler
,
N. A.
,
Schmitz
,
T. L.
, and
Sawyer
,
W. G.
,
2010
, “
Analysis of Planar Multibody Systems With Revolute Joint Wear
,”
Wear
,
268
(
5–6
), pp.
643
652
.
17.
Mukras
,
S.
,
Kim
,
N. H.
,
Sawyer
,
W. G.
,
Jackson
,
D. B.
, and
Bergquist
,
L. W.
,
2009
, “
Numerical Integration Schemes and Parallel Computation for Wear Prediction Using Finite Element Method
,”
Wear
,
266
(
7–8
), pp.
822
831
.
18.
Mukras
,
S.
,
Kim
,
N. H.
,
Mauntler
,
N. A.
,
Schmitz
,
T.
, and
Sawyer
,
W. G.
,
2010
, “
Comparison Between Elastic Foundation and Contact Force Models in Wear Analysis of Planar Multibody System
,”
ASME J. Tribol.
,
132
(
3
), p.
031604
.
19.
Flores
,
P.
,
2009
, “
Modeling and Simulation of Wear in Revolute Clearance Joints in Multibody Systems
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1211
1222
.
20.
Bai
,
Z. F.
,
Zhao
,
Y.
, and
Chen
,
J.
,
2013
, “
Dynamics Analysis of Planar Mechanical System Considering Revolute Clearance Joint Wear
,”
Tribol. Int.
,
64
, pp.
85
95
.
21.
Li
,
P.
,
Chen
,
W.
,
Li
,
D.
,
Yu
,
R.
, and
Zhang
,
W.
,
2016
, “
Wear Analysis of Two Revolute Joints With Clearance in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
1
), p.
011009
.
22.
Yue
,
T.
, and
Abdel
,
M.
,
2017
, “
Finite Element Analysis of Fretting Wear Under Variable Coefficient of Friction and Different Contact Regimes
,”
Tribiol. Int.
,
107
(
11
), pp.
274
282
.
23.
Wang
,
G.
,
Liu
,
H.
, and
Deng
,
P.
,
2015
, “
Dynamics Analysis of Spatial Multibody System With Spherical Joint Wear
,”
ASME J. Tribol.
,
137
(
2
), p.
021605
.
24.
Wang
,
G.
,
Liu
,
H.
,
Deng
,
P.
,
Yin
,
K.
, and
Zhang
,
G.
,
2017
, “
Dynamic Analysis of 4-SPS/CU Parallel Mechanism Considering Three-Dimensional Wear of Spherical Joint With Clearance
,”
ASME J. Tribol.
,
139
(
2
), p.
021608
.
25.
Uddin
,
M. S.
, and
Zhang
,
L. C.
,
2013
, “
Predicting the Wear of Hard-on-Hard Hip Joint Prostheses
,”
Wear
,
301
(
1–2
), pp.
192
200
.
26.
Di Puccio
,
F.
, and
Mattei
,
L.
,
2015
, “
A Novel Approach to the Estimation and Application of the Wear Coefficient of Metal-on-Metal Hip Implants
,”
Tribol. Int.
,
83
, pp.
69
76
.
27.
Askari
,
E.
,
Flores
,
P.
,
Dabirrahmani
,
D.
, and
Appleyard
,
R.
,
2015
, “
Dynamic Modeling and Analysis of Wear in Spatial Hard-on-Hard Couple Hip Replacements Using Multibody Systems Methodologies
,”
Nonlinear Dyn.
,
82
(
1–2
), pp.
1039
1058
.
28.
Hyldahl
,
P.
,
Mikkola
,
A. M.
,
Balling
,
O.
, and
Sopanen
,
J. T.
,
2014
, “
Behavior of Thin Rectangular ANCF Shell Elements in Various Mesh Configurations
,”
Nonlinear Dyn.
,
78
(
2
), pp.
1277
1291
.
29.
Dufva
,
K.
, and
Shabana
,
A.
,
2005
, “
Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng. Part K
,
219
(
4
), pp.
345
355
.
30.
Wang
,
G.
, and
Liu
,
H.
,
2017
, “
Dynamics Model of 4-SPS/CU Parallel Mechanism With Spherical Clearance Joint and Flexible Moving Platform
,”
ASME J. Tribol.
,
140
(
2
), p.
021101
.
31.
Flores
,
P.
, and
Ambrosio
,
J.
,
2010
, “
On the Contact Detection for Contact-Impact Analysis in Multibody Systems
,”
Multibody Syst. Dyn.
,
24
(
1
), pp.
103
122
.
32.
Banerjee
,
A.
,
Chanda
,
A.
, and
Das
,
R.
,
2017
, “
Historical Origin and Recent Development on Normal Directional Impact Models for Rigid Body Contact Simulation: A Critical Review
,”
Arch. Comput. Methods Eng.
, 24(2), pp.
397
422
.
33.
MacHado
,
M.
,
Moreira
,
P.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2012
, “
Compliant Contact Force Models in Multibody Dynamics: Evolution of the Hertz Contact Theory
,”
Mech. Mach. Theory
,
53
, pp.
99
121
.
34.
Alves
,
J.
,
Peixinho
,
N.
,
Da Silva
,
M. T.
,
Flores
,
P.
, and
Lankarani
,
H. M.
,
2015
, “
A Comparative Study of the Viscoelastic Constitutive Models for Frictionless Contact Interfaces in Solids
,”
Mech. Mach. Theory
,
85
, pp.
172
188
.
35.
Flores
,
P.
,
MacHado
,
M.
,
Silva
,
M. T.
, and
Martins
,
J. M.
,
2011
, “
On the Continuous Contact Force Models for Soft Materials in Multibody Dynamics
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
357
375
.
36.
Pennestrì
,
E.
,
Rossi
,
V.
,
Salvini
,
P.
, and
Valentini
,
P. P.
,
2016
, “
Review and Comparison of Dry Friction Force Models
,”
Nonlinear Dyn.
,
83
(
4
), pp.
1785
1801
.
37.
Ambro´sio
,
J. A. C.
,
2003
, “
Impact of Rigid and Flexible Multibody Systems: Deformation Description and Contact Models
,” Virtual Nonlinear Multibody Systems, Springer, Dordrecht, The Netherlands, pp.
51
87
.
38.
Marques
,
F.
,
Flores
,
P.
,
Claro
,
J. C. P.
, and
Lankarani
,
H. M.
,
2016
, “
A Survey and Comparison of Several Friction Force Models for Dynamic Analysis of Multibody Mechanical Systems
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1407
1443
.
39.
Shabana
,
A. A.
,
2005
,
Dynamics of Multibody Systems
, 3rd ed., Cambridge University Press, New York.
40.
Sugiyama
,
H.
,
Escalona
,
J. L.
, and
Shabana
,
A. A.
,
2003
, “
Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates
,”
Nonlinear Dyn.
,
31
(
2
), pp.
167
195
.
41.
Villaggio
,
P.
,
2001
, “
Wear of an Elastic Block
,”
Meccanica
,
36
(
3
), pp.
243
249
.
42.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
43.
Dorini
,
F. A.
, and
Sampaio
,
R.
,
2012
, “
Some Results on the Random Wear Coefficient of the Archard Model
,”
ASME J. Appl. Mech.
,
79
(
5
), p.
051008
.
You do not currently have access to this content.