Greases are widely used in extreme conditions of load, speed, and temperature, altogether with the improvement in the service life of the machinery by reducing the noise and vibration. The present study deals with the development of nanocomposite greases and their tribodynamic evaluation under boundary lubrication (BL), antiwear, extreme pressure (EP), and vibration behavior of nonconformal metallic contacts. The recording of the vibration signals constitutes the indirect approach to evaluate the lubricity of the tribological contacts. The different nano-additives (reduced graphene oxide (rGO) nanosheets, CaCO3, and α-Al2O3 nanoparticles) are dispersed in commercial lithium grease to formulate nanocomposite greases. The microstructural studies of greases are performed on high-resolution transmission electron microscopy (HRTEM). The BL behavior is studied using four ball tester. Further, the functional groups of the greases and the chemistry of the worn surfaces are evaluated through Raman spectroscopy (RS). To explore the involvement of wear mechanism(s), the morphology of worn surfaces is evaluated using scanning electron microscopy (SEM). The results showed that doping of 0.4% rGO and 5% CaCO3 in bare lithium grease can significantly improve the antiwear, EP properties, and vibration behavior, compared to α-Al2O3 dispersed composite grease.

References

1.
Couronne
,
I.
,
Vergne
,
P.
,
Mazuyer
,
D.
,
Troung-Dinh
,
N.
, and
Girodin
,
D.
,
2003
, “
Effects of Grease Composition and Structure on Film Thickness in Rolling Contact
,”
Tribol. Int.
,
46
(1), pp.
31
36
.
2.
Scott
,
W.
,
P.
, and
Root
,
C.
,
1996
,
Lubricating Grease Guide
, 4th ed.,
National Lubricating Grease Institute
,
Kansas City, MO
.
3.
Lugt
,
P. M.
,
2016
, “
Modern Advancements in Lubricating Grease Technology
,”
Tribol. Int.
,
97
, pp.
467
477
.
4.
Paszkowski
,
M.
, and
Olsztynska-Janus
,
S.
,
2014
, “
Grease Thixotropy: Evaluation of Grease Microstructure Change Due to Shear and Relaxation
,”
Ind. Lubr. Tribol.
,
66
, pp.
223
237
.
5.
Salomonsson
,
L.
,
Stang
,
G.
, and
Zhmud
,
B.
,
2007
, “
Oil/Thickener Interactions and Rheology of Lubricating Greases
,”
Tribol. Trans.
,
50
(3), pp.
302
309
.
6.
Lugt
,
P. M.
,
2009
, “
A Review on Grease Lubrication in Rolling Bearings
,”
Tribol. Trans.
,
52
(4), pp.
470
480
.
7.
Kanazawa
,
Y.
,
Sayles
,
R. S.
, and
Kadiric
,
A.
,
2017
, “
Film Formation and Friction in Grease Lubricated Rolling-Sliding Non-Conformal Contacts
,”
Tribol. Int.
,
109
, pp.
505
518
.
8.
De Laurentis
,
N.
,
Kadiric
,
A.
,
Lugt
,
P.
, and
Cann
,
P.
,
2015
, “
The Influence of Bearing Grease Composition on Friction in Rolling/Sliding Concentrated Contacts
,”
Tribol. Int.
,
94
, pp.
624
632
.
9.
Lundberg
,
O. E.
,
Finnveden
,
S.
,
Bjorklund
,
S.
,
Parssinen
,
M.
, and
Lopez Arteaga
,
I.
,
2015
, “
A Nonlinear State-Dependent Model for Vibrations Excited by Roughness in Rolling Contacts
,”
J. Sound Vib.
,
345
, pp.
197
213
.
10.
Sabot
,
J.
,
Krempf
,
P.
, and
Janolin
,
C.
,
1998
, “
Non-Linear Vibrations of a Sphere-Plane Contact Excited by a Normal Load
,”
J. Sound Vib.
,
214
(2), pp.
359
375
.
11.
Sinou
,
J.-J.
, Cayer-Barrioz, J., and
Berro
,
H.
,
2013
, “
Friction-Induced Vibration of a Lubricated Mechanical System
,”
Tribol. Int.
,
61
, pp.
156
168
.
12.
Soobbarayen
,
K.
,
Besset
,
S.
, and
Sinou
,
J.-J.
,
2013
, “
Noise and Vibration for a Self-Excited Mechanical System With Friction
,”
Appl. Acoust.
,
74
(10), pp.
1191
1204
.
13.
Perret-Liaudet
,
J.
, and
Rigaud
,
E.
,
2003
, “
Experiments and Numerical Results on Non-Linear Vibrations of an Impacting Hertzian Contact—Part 2: Random Excitation
,”
J. Sound Vib.
,
265
(2), pp.
309
327
.
14.
Hess
,
D. P.
, and
Soom
,
A.
,
1993
, “
Normal Vibrations and Friction at a Hertzian Contact Under Random Excitation: Perturbation Solution
,”
J. Sound Vib.
,
164
(2), pp.
317
326
.
15.
Meziane
,
A.
, and
Baillet
,
L.
,
2010
, “
Non Linear Analysis of Vibrations Generated by a Contact With Friction
,”
Eur. J. Comput. Mech.
,
19
(1–3), pp.
305
316
.
16.
Anderson
,
G. L.
,
1971
, “
On the Forced Vibrations of Elastic Bodies in Contact
,”
J. Sound Vib.
,
16
(4), pp.
533
549
.
17.
Hess
,
D. P.
, and
Soom
,
A.
,
1991
, “
Normal Vibrations and Friction Under Harmonic Loads—Part II: Rough Planar Contacts
,”
ASME J. Tribol.
,
113
(1), pp.
87
92
.
18.
Soom
,
A.
, and
Chen
,
J.-W.
,
1986
, “
Simulation of Random Surface Roughness-Induced Contact Vibrations at Hertzian Contacts During Steady Sliding
,”
ASME J. Tribol.
,
108
(1), pp.
123
127
.
19.
Singh
,
J.
,
Anand
,
G.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2016
, “
Graphene Based Composite Grease for Elastohydrodynamic Lubricated Point Contact
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
149
(1), p. 012195.
20.
Mohamed
,
A.
,
Osman
,
T. A.
,
Khattab
,
A.
, and
Zaki
,
M.
,
2015
, “
Tribological Behavior of Carbon Nanotubes as an Additive on Lithium Grease
,”
ASME J. Tribol.
,
137
(1), p. 011801.
21.
Wang
,
L.
,
Wang
,
B.
,
Wang
,
X.
, and
Liu
,
W.
,
2007
, “
Tribological Investigation of CaF2 Nanocrystals as Grease Additives
,”
Tribol. Int.
,
40
(7), pp.
1179
1185
.
22.
Zhao
,
G.
,
Zhao
,
Q.
,
Li
,
W.
,
Wang
,
X.
, and
Liu
,
W.
,
2014
, “
Tribological Properties of Nano-Calcium Borate as Lithium Grease Additive
,”
Lubr. Sci.
,
26
(1), pp.
43
53
.
23.
Ji
,
X.
,
Chen
,
Y.
,
Zhao
,
G.
,
Wang
,
X.
, and
Liu
,
W.
,
2011
, “
Tribological Properties of CaCO3 Nanoparticles as an Additive in Lithium Grease
,”
Tribol. Lett.
,
41
(1), pp.
113
119
.
24.
Cheng
,
Z. L.
, and
Qin
,
X. X.
,
2014
, “
Study on Friction Performance of Graphene-Based Semi-Solid Grease
,”
Chin. Chem. Lett.
,
25
(9), pp.
1305
1307
.
25.
Ge
,
X.
,
Xia
,
Y.
, and
Cao
,
Z.
,
2015
, “
Tribological Properties and Insulation Effect of Nanometer TiO2 and Nanometer SiO2 as Additives in Grease
,”
Tribol. Int.
,
92
, pp.
454
461
.
26.
Geim
,
A.
,
2004
, “
Beyond Graphene
,”
Science
,
348
(
634
), pp.
490
492
.
27.
Berman
,
D.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2013
, “
Few Layer Graphene to Reduce Wear and Friction on Sliding Steel Surfaces
,”
Carbon
,
54
, pp.
454
459
.
28.
Senatore
,
A.
,
Agostino
,
V. D.
,
Petrone
,
V.
,
Ciambelli
,
P.
, and
Sarno
,
M.
,
2013
, “
Graphene Oxide Nanosheets as Effective Friction Modifier for Oil Lubricant: Materials, Methods, and Tribological Results
,”
ISRN Tribol.
,
2013
, p. 425809.
29.
Berman
,
D.
,
Deshmukh
,
S. A.
,
Sankaranarayanan
,
S. K. R. S.
,
Erdemir
,
A.
, and
Sumant
,
A. V.
,
2014
, “
Extraordinary Macroscale Wear Resistance of One Atom Thick Graphene Layer
,”
Adv. Funct. Mater.
,
24
(
42
), pp.
6640
6646
.
30.
Jin
,
D.
, and
Yue
,
L.
,
2008
, “
Tribological Properties Study of Spherical Calcium Carbonate Composite as Lubricant Additive
,”
Mater. Lett.
,
62
(10–11), pp.
1565
1568
.
31.
Caixiang
,
G. U.
,
Qingzhu
,
L. I.
,
Zhuoming
,
G. U.
, and
Guangyao
,
Z. H. U.
,
2008
, “
Study on Application of CeO2 and CaCO3 Nanoparticles in Lubricating Oils
,”
J. Rare Earths
,
26
(2), pp.
163
167
.
32.
Zhang
,
M.
,
Wang
,
X.
,
Fu
,
X.
, and
Xia
,
Y.
,
2009
, “
Performance and Anti-Wear Mechanism of CaCO3 Nanoparticles as a Green Additive in Poly-Alpha-Olefin
,”
Tribol. Int.
,
42
(7), pp.
1029
1039
.
33.
Radice
,
S.
, and
Mischler
,
S.
,
2006
, “
Effect of Electrochemical and Mechanical Parameters on the Lubrication Behaviour of Al2O3 Nanoparticles in Aqueous Suspensions
,”
Wear
,
261
(9), pp.
1032
1041
.
34.
Jiao
,
D.
,
Zheng
,
S.
,
Wang
,
Y.
,
Guan
,
R.
, and
Cao
,
B.
,
2011
, “
The Tribology Properties of Alumina/Silica Composite Nanoparticles as Lubricant Additives
,”
Appl. Surf. Sci.
,
257
(13), pp.
5720
5725
.
35.
Singh
,
J.
,
Kumar
,
D.
, and
Tandon
,
N.
,
2017
, “
Development of Nanocomposite Grease: Microstructure, Flow, and Tribological Studies
,”
ASME J. Tribol.
,
139
(5), p. 052001.
36.
Mungse
,
H. P.
, and
Khatri
,
O. P.
,
2014
, “
Chemically Functionalized Reduced Graphene Oxide as a Novel Material for Reduction of Friction and Wear
,”
J. Phys. Chem. C
,
118
(26), pp.
14394
14402
.
37.
Kostiuk
,
D.
,
Bodik
,
M.
,
Siffalovic
,
P.
,
Jergel
,
M.
,
Halahovets
,
Y.
,
Hodas
,
M.
,
Pelletta
,
M.
,
Pelach
,
M.
,
Hulman
,
M.
,
Spitalsky
,
Z.
, and
Majkova
,
E.
,
2015
, “
Reliable Determination of the Few-Layer Graphene Oxide Thickness Using Raman Spectroscopy
,”
J. Raman Spectrosc.
,
47
(4), pp.
391
394
.
38.
Ferrari
,
A. C.
,
Meyer
,
J. C.
,
Scardaci
,
V.
,
Casiraghi
,
C.
,
Lazzeri
,
M.
,
Mauri
,
F.
,
Piscanec
,
S.
,
Jiang
,
D.
,
Novoselov
,
K. S.
,
Roth
,
S.
, and
Geim
,
A. K.
,
2006
, “
Raman Spectrum of Graphene and Graphene Layers
,”
Phys. Rev. Lett.
,
97
(
18
), p.
187401
.
39.
Graf
,
D.
,
Molitor
,
F.
,
Ensslin
,
K.
,
Stampfer
,
C.
,
Jungen
,
A.
, and
Hierold
,
C.
,
2007
, “
Spatially Resolved Raman Spectroscopy of Single-and Few-Layer Graphene
,”
Nano Lett.
,
7
(2), pp.
238
242
.
40.
Zheng
,
X.
,
Peng
,
Y.
,
Yang
,
Y.
,
Chen
,
J.
, and
Tian
,
H.
,
2017
, “
Hydrothermal Reduction of Graphene Oxide; Effect on Surface-Enhanced Raman Scattering
,”
J. Raman Spectrosc.
,
48
(1), pp.
97
103
.
41.
Tuinstra
,
F.
, and
Koenig
,
J. L.
,
1970
, “
Raman Spectrum of Graphite Raman Spectrum of Graphite
,”
J. Chem. Phys.
,
53
(3), pp.
1126
1130
.
42.
Schmid
,
T.
, and
Dariz
,
P.
,
2015
, “
Shedding Light onto the Spectra of Lime: Raman and Luminescence Bands of CaO, Ca(OH)2 and CaCO3
,”
J. Raman Spectrosc.
,
46
(1), pp.
141
146
.
43.
Downs, R. T., 2006, “
The RRUFF Project: An Integrated Study of the Chemistry, Crystallography, Raman and Infrared Spectroscopy of Minerals
,” 19th General Meeting of the International Mineralogical Association, Kobe, Japan, July 23–28.
44.
Praveena
,
M.
,
Guha
,
K.
,
Ravishankar
,
A.
,
Biswas
,
S. K.
,
Bain
,
C. D.
, and
Jayaram
,
V.
,
2014
, “
Total Internal Reflection Raman Spectroscopy of Poly(alpha-olefin) Oils in a Lubricated Contact
,”
RSC Adv.
,
4
(42), pp.
22205
22213
.
45.
Thorp
,
J. M.
,
1975
, “
Four-Ball Assessment of Deep Drawing Oils
,”
Wear
,
33
(1), pp.
93
108
.
46.
Lin
,
Y.-C.
,
Cho
,
Y.
, and
Chiu
,
C.-T.
,
2012
, “
Tribological Performance of EP Additives in Different Base Oils
,”
Tribol. Trans.
,
55
(2), pp.
175
184
.
47.
Evans
,
R. D.
,
Nixon
,
H. P.
,
Darragh
,
C. V.
,
Howe
,
J. Y.
, and
Coffey
,
D. W.
,
2007
, “
Effects of Extreme Pressure Additive Chemistry on Rolling Element Bearing Surface Durability
,”
Tribol. Int.
,
40
(10–12), pp.
1649
1654
.
48.
Pérez
,
A. T.
,
Battez
,
A. H.
,
García-atance
,
G.
,
Viesca
,
J. L.
,
González
,
R.
, and
Hadfield
,
M.
,
2011
, “
Use of Optical Profilometry in the ASTM D4172 Standard
,”
Wear
,
271
(11–12), pp.
2963
2967
.
49.
Katagiri
,
G.
,
Ishida
,
H.
, and
Ishitani
,
A.
,
1988
, “
Raman Spectra of Graphite Edge Planes
,”
Carbon
,
26
(4), pp.
565
571
.
50.
Sayed
,
B. A.
,
Chatelet
,
E.
,
Baguet
,
S.
, and
Jacquet-Richardet
,
G.
,
2011
, “
Dissipated Energy and Boundary Condition Effects Associated to Dry Friction on the Dynamics of Vibrating Structures
,”
Mech. Mach. Theory
,
46
(4), pp.
479
491
.
51.
Dautzenberg
,
J. H.
, and
Kals
,
J. A.
,
1986
, “
A Model for Vibrations During Dry Sliding Friction
,”
CIRP Ann. Manuf. Technol.
,
35
(1), pp.
417
421
.
52.
Silver
,
H. B.
, and
Stanley
,
I. R.
,
1974
, “
The Effect of the Thickener on the Efficiency of Load-Carrying Additives in Greases
,”
Tribology
,
7
(3), pp.
113
118
.
53.
Dubey
,
M. K.
,
Bijwe
,
J.
, and
Ramakumar
,
S. S. V.
,
2015
, “
Nano-PTFE: New Entrant as a Very Promising EP Additive
,”
Tribiol. Int.
,
87
, pp.
121
131
.
54.
Ghaednia
,
H.
,
Jackson
,
R. L.
, and
Khodadadi
,
J. M.
,
2017
, “
Experimental Analysis of Stable CuO Nanoparticle Enhanced Lubricants
,”
J. Exp. Nanosci.
,
10
(1), pp.
1
18
.
You do not currently have access to this content.