Abstract
Various solutions for the design of oil-free bearings are discussed in the literature. Adding hydrodynamic preload to the foil bearings by profiling the inner bore of the bearing is one of the most frequently investigated methods for improving the bearing stability and damping character of the entire system. However, this approach leads to a reduced load capacity and thus to an increased lift-off speed of the foil bearings. Observations of this kind lead to the presentation of various solutions for active bearing contour adjustment, which benefits from different profiles of the lubricant film. Most of these concepts use piezoelectric stack actuators to generate the required alternating force, although the influence of the stiffness of adaptive elements on bearing performance is not fully discussed in the literature. The focus of this study is on the investigation of structural conformity, i.e., the harmonization of stiffness with respect to the requirements for shape control and load capacity of an adaptive air foil bearing (AAFB). The result may be a basis for the consideration of additional degrees of freedom in any concept with shape control as the main design framework in interaction between the lubricant and compliant structure in an air foil bearing from both static and dynamic points of view.