Abstract

The interaction and surface features between point contact surfaces composed of longitudinal roughness with infinite or finite length and transverse roughness were discussed based on a transient non-Newtonian thermal elastohydrodynamic lubrication (EHL) model. Each surface shape is greatly affected by the difference in elastic moduli, thermal conductivities, and velocities of both contact surfaces. There is a large difference in pressure behavior when the transverse roughness is in contact with the longitudinal roughness with finite length and when it is in contact with the longitudinal roughness with infinite length. In the contact between surfaces with infinitely long longitudinal and transverse roughness, the friction coefficient is lower when the surface with longitudinal roughness has a low thermal conductivity than when it has a high thermal conductivity. Furthermore, the pressure fluctuation is larger when the transverse roughness surface has a high thermal conductivity than when it has a low thermal conductivity.

References

1.
Dowson
,
D.
, and
Higginson
,
G. R.
,
1966
,
Elastohydrodynamic Lubrication, the Fundamentals of Roller and Gear Lubrication
,
Pergamon
,
Oxford
.
2.
Fowles
,
P. E.
,
1971
, “
A Thermal Elastohydrodynamic Theory for Individual Asperity–Asperity Collisions
,”
J. Lubr. Technol.
,
93
(
3
), pp.
383
397
. 10.1115/1.3451603
3.
Ai
,
X.
, and
Zheng
,
L.
,
1989
, “
A General Model for Microelastohydrodynamic Lubrication and Its Full Numerical Solution
,”
ASME J. Tribol.
,
111
(
4
), pp.
569
576
. 10.1115/1.3261979
4.
Chang
,
L.
,
Jackson
,
A.
, and
Webster
,
M. N.
,
1994
, “
Effects of 3-D Surface Topography on the EHL Film Thickness and Film Breakdown
,”
Tribol. Trans.
,
37
(
3
), pp.
435
444
. 10.1080/10402009408983315
5.
Holmes
,
M. J. A.
,
Evans
,
H. P.
,
Hughes
,
T. G.
, and
Snidle
,
R. W.
,
2003
, “
Transient Elastohydrodynamic Point Contact Analysis Using a New Coupled Differential Deflection Method. Part 2: Results
,”
Proc. Inst. Mech. Eng., Part J
,
217
(
4
), pp.
305
321
. 10.1243/135065003768618650
6.
Cui
,
J.
, and
Yang
,
P.
,
2004
, “
Transient Thermo-EHL Theory of Point Contact—The Process of a Bump on the Fast Surface Passing a Bump on the Slower Surface
,”
Proceedings of the 30th Leeds-Lyon Symposium on Tribol
, G. Dalmaz, eds.,
Elsevier
,
Amsterdam
, pp.
253
261
.
7.
Yang
,
P.
,
Cui
,
J.
,
Jin
,
Z. M.
, and
Dowson
,
D.
,
2008
, “
Influence of Two-Sided Surface Waviness on the EHL Behavior of Rolling/Sliding Point Contacts Under Thermal and Non-Newtonian Conditions
,”
ASME J. Tribol.
,
130
(
4
), p.
041502
. 10.1115/1.2958078
8.
Yang
,
P.
,
Qu
,
S.
,
Kaneta
,
M.
, and
Nishikawa
,
H.
,
2001
, “
Formation of Steady Dimples in Point TEHL Contacts
,”
ASME J. Tribol.
,
123
(
1
), pp.
42
49
. 10.1115/1.1332399
9.
Kaneta
,
M.
, and
Yang
,
P.
,
2003
, “
Effects of Thermal Conductivity of Contacting Surfaces on Point EHL Contacts
,”
ASME J. Tribol.
,
125
(
4
), pp.
731
738
. 10.1115/1.1540121
10.
Kaneta
,
M.
,
Yang
,
P.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2015
, “
Fundamentals of Thermal Elastohydrodynamic Lubrication in Si3N4 and Steel Circular Contacts
,”
Proc. Inst. Mech. Eng., Part J
,
229
(
8
), pp.
929
939
. 10.1177/1350650114565679
11.
Kaneta
,
M.
,
Sperka
,
P.
,
Yang
,
P.
,
Krupka
,
I.
,
Yang
,
P.
, and
Hartl
,
M.
,
2018
, “
Thermal Elastohydrodynamic Lubrication of Ceramic Materials
,”
STLE Tribol. Trans.
,
61
(
5
), pp.
869
879
. 10.1080/10402004.2018.1437492
12.
Cui
,
J.
,
Yang
,
P.
,
Kaneta
,
M.
, and
Krupka
,
I.
,
2017
, “
Numerical Study on the Interaction of Transversely Oriented Ridges in Thermal Elastohydrodynamic Lubrication Point Contacts Using the Eyring Shear-Thinning Model
,”
Proc. Inst. Mech. Eng., Part J
,
231
(
1
), pp.
93
106
. 10.1177/1350650116646943
13.
Cameron
,
A.
,
1958
, “
The Viscosity Wedge
,”
ASLE Trans.
,
1
(
2
), pp.
248
253
. 10.1080/05698195808972337
14.
Björling
,
M.
,
Isaksson
,
P.
,
Marklund
,
P.
, and
Larsson
,
R.
,
2012
, “
The Influence of DLC on EHL Friction Coefficient
,”
Tribol. Lett.
,
47
(
2
), pp.
285
294
. 10.1007/s11249-012-9987-7
15.
Björling
,
M.
,
Habchi
,
W.
,
Bair
,
S.
,
Larsson
,
R.
, and
Marklund
,
P.
,
2014
, “
Friction Reduction in Elastohydrodynamic Contacts by Thin Layer Thermal Insulation
,”
Tribol. Lett.
,
53
(
2
), pp.
477
486
. 10.1007/s11249-013-0286-8
16.
Habchi
,
W.
,
2014
, “
A Numerical Model for the Solution of Thermal Elastohydrodynamic Lubrication in Coated Circular Contacts
,”
Tribol. Int.
,
73
, pp.
57
68
. 10.1016/j.triboint.2014.01.002
17.
Krupka
,
I.
,
Hartl
,
M.
,
Matsuda
,
K.
,
Nishikawa
,
H.
,
Wang
,
J.
,
Guo
,
F.
,
Yang
,
P.
, and
Kaneta
,
M.
,
2019
, “
Deformation of Rough Surfaces in Point EHL Contacts
,”
Tribol. Lett.
,
67
(
2
), p.
33
. 10.1007/s11249-019-1145-z
18.
Kaneta
,
M.
,
Matsuda
,
K.
,
Wang
,
J.
, and
Yang
,
P.
,
2020
, “
Numerical Study on Effect of Dimples on Tribo-Characteristics in Non-Newtonian Thermal Elastohydrodynamic Lubrication Point Contacts With Different Mechanical and Thermal Properties
,”
ASME J. Tribol.
,
142
(
4
), p.
041601
. 10.1115/1.4045638
19.
Kaneta
,
M.
,
Matsuda
,
K.
,
Wang
,
J.
, and
Yang
,
P.
,
2020
, “
Numerical Study on Effect of Thermal Conductivity in Point Contacts With Longitudinal Roughness on Abnormal Pressure Distribution
,”
ASME J. Tribol.
,
142
(
12
), p.
121601
. 10.1115/1.4047300
20.
Bair
,
S.
,
2004
, “
Actual Eyring Models for Thixotropy and Shear-Thinning: Experimental Validation and Application to EHD
,”
ASME J. Tribol.
,
126
(
4
), pp.
728
732
. 10.1115/1.1792693
21.
Habchi
,
W.
,
Vergne
,
P.
,
Bair
,
S.
,
Andersson
,
O.
,
Eyheramendy
,
D.
, and
Morales-Espejel
,
G. E.
,
2010
, “
Influence of Pressure and Temperature Dependence of Thermal Properties of a Lubricant on the Behaviour of Circular TEHD Contacts
,”
Tribol. Int.
,
43
(
10
), pp.
1842
1850
. 10.1016/j.triboint.2009.10.002
22.
Habchi
,
W.
, and
Bair
,
S.
,
2013
, “
Quantitative Compressibility Effects in Thermal Elastohydrodynamic Circular Contacts
,”
ASME J. Tribol.
,
135
(
1
), p.
011502
. 10.1115/1.4023082
23.
Larsson
,
R.
,
Larsson
,
P. O.
,
Eriksson
,
E.
,
Sjöberg
,
M.
, and
Höglund
,
E.
,
2000
, “
Lubricant Properties for Input to Hydrodynamic and Elastohydrodynamic Lubrication Analyses
,”
Proc. Inst. Mech. Eng., Part J
,
214
(
1
), pp.
17
27
. 10.1243/1350650001542981
24.
Larsson
,
R.
, and
Andersson
,
O.
,
2000
, “
Lubricant Thermal Conductivity and Heat Capacity Under High Pressure
,”
Proc. Inst. Mech. Eng., Part J
,
214
(
4
), pp.
337
342
. 10.1243/1350650001543223
25.
Kumar
,
P.
, and
Khonsari
,
M. M.
,
2009
, “
Traction in EHL Line Contacts Using Free Volume Pressure–Viscosity Relationship With Thermal and Shear-Thinning Effects
,”
ASME J. Tribol.
,
131
(
1
), p.
011503
. 10.1115/1.3002331
26.
Yang
,
P.
, and
Wen
,
S.
,
1990
, “
A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
112
(
4
), pp.
631
636
. 10.1115/1.2920308
27.
Ohno
,
N.
,
2007
, “
High-Pressure Behavior of Toroidal CVT Fluid for Automobile
,”
Tribol. Int.
,
40
(
2
), pp.
233
238
. 10.1016/j.triboint.2005.09.015
28.
Liu
,
X.
,
Jiang
,
M.
,
Yang
,
P.
, and
Kaneta
,
M.
,
2005
, “
Non-Newtonian Thermal Analyses of Point EHL Contacts Using the Eyring Model
,”
ASME J. Tribol.
,
127
(
1
), pp.
70
81
. 10.1115/1.1843161
29.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
2000
,
Multilevel Methods in Lubrication
,
Elsevier
,
Amsterdam
.
30.
Reddyhoff
,
T.
,
Schmidt
,
A.
, and
Spikes
,
H.
,
2019
, “
Thermal Conductivity and Flash Temperature
,”
Tribol. Lett.
,
67
(
1
), p.
22
. 10.1007/s11249-018-1133-8
31.
Habchi
,
W.
, and
Bair
,
S.
,
2020
, “
The Role of the Thermal Conductivity of Steel in Quantitative Elastohydrodynamic Friction
,”
Tribol. Int.
,
142
, p.
105970
. 10.1016/j.triboint.2019.105970
32.
Liu
,
H. C.
,
Zhang
,
B. B.
,
Bader
,
N.
,
Poll
,
G.
, and
Venner
,
C. H.
,
2020
, “
Influences of Solid and Lubricant Thermal Conductivity on Traction in an EHL Circular Contact
,”
Tribol. Int.
,
146
(
10
), p.
106059
. 10.1016/j.triboint.2019.106059
You do not currently have access to this content.