Abstract

To investigate the influence of surface roughnesses on the dynamic characteristics of AISI 5120 steel in sliding friction process, a suite of running-in experiments are performed on a pin-on-disk tribometer. The running-in attractor is used to analyze the high-dimensional features of a friction system under different surface roughnesses. The experimental results show that the roughnesses of different original surfaces evolve to the same value in stable wear stage. The pin-on-disk friction system has a chaotic nature and exists a running-in attractor. The original surface of a disk of Ra = 0.953 μm is the most conducive to shorten the running-in duration, reduce the friction coefficient value, and improve the stability of the friction system. This roughness value is termed as the optimum surface roughness. It is an ideal working surface for the friction pair in the running-in design.

References

1.
Mezlini
,
S.
,
Tkaya
,
M. B.
,
Mansori
,
M. E.
,
Zahouani
,
H.
, and
Kapsa
,
P.
,
2009
, “
Correlation Between Tribological Parameters and Wear Mechanisms of Homogeneous and Heterogeneous Material
,”
Tribol. Lett.
,
33
(
2
), pp.
153
159
. 10.1007/s11249-008-9403-5
2.
Dmitriev
,
A. I.
,
Schargott
,
M.
, and
Popov
,
V. L.
,
2010
, “
Direct Modelling of Surface Topography Development in a Micro-Contact With the Movable Cellular Automata Method
,”
Wear
,
268
(
7–8
), pp.
877
885
. 10.1016/j.wear.2009.12.002
3.
Straffelini
,
G.
,
Bizzotto
,
G.
, and
Zanon
,
V.
,
2010
, “
Improving the Wear Resistance of Tools for Stamping
,”
Wear
,
269
(
9–10
), pp.
693
697
. 10.1016/j.wear.2010.07.004
4.
Ghosh
,
A.
, and
Sadeghi
,
F.
,
2015
, “
A Novel Approach to Model Effects of Surface Roughness Parameters on Wear
,”
Wear
,
338–339
, pp.
73
94
. 10.1016/j.wear.2015.04.022
5.
Zhang
,
Z. K.
,
Zhang
,
Y. Y.
, and
Zhu
,
Y. S.
,
2010
, “
A New Approach to Analysis of Surface Topograph
,”
Precis. Eng.
,
34
(
4
), pp.
807
810
. 10.1016/j.precisioneng.2010.05.002
6.
Zhou
,
Z. Y.
,
Yu
,
G. L.
,
Zheng
,
Q. Y.
,
Ma
,
G. Z.
,
Ye
,
S. B.
,
Ding
,
C.
, and
Piao
,
Z. Y.
,
2020
, “
Wear Behavior of 7075-Aluminum After Ultrasonic-Assisted Surface Burnishing
,”
J. Manuf. Processes
,
51
, pp.
1
9
. 10.1016/j.jmapro.2020.01.026
7.
Piao
,
Z. Y.
,
Xu
,
B. S.
,
Wang
,
H. D.
, and
Yu
,
X. X.
,
2020
, “
Rolling Contact Fatigue Behavior of Thermal-Sprayed Coating: A Review
,”
Crit. Rev. Solid State Mater. Sci.
,
45
(
6
),
429
456
. 10.1080/10408436.2019.1671798
8.
Piao
,
Z. Y.
,
Zhou
,
Z. Y.
,
Xu
,
J.
, and
Wang
,
H. D.
,
2019
, “
Use of X-Ray Computed Tomography to Investigate Rolling Contact Cracks in Plasma Sprayed Fe-Cr-B-Si Coating
,”
Tribol. Lett.
,
67
(
1
), p.
11
. 10.1007/s11249-018-1126-7
9.
Sedlacek
,
M.
,
Podgornik
,
B.
, and
Vizintin
,
J.
,
2009
, “
Influence of Surface Preparation on Roughness Parameters, Friction and Wear
,”
Wear
,
2696
(
3–4
), pp.
482
487
. 10.1016/j.wear.2008.04.017
10.
Kubiak
,
K. J.
,
Liskiewicz
,
T. W.
, and
Mathia
,
T. G.
,
2011
, “
Surface Morphology in Engineering Applications: Influence of Roughness on Sliding and Wear in Dry Fretting
,”
Tribol. Int.
,
44
(
11
), pp.
1427
1432
. 10.1016/j.triboint.2011.04.020
11.
Wang
,
A. Y.
,
Mo
,
J. L.
,
Wang
,
X. C.
,
Zhu
,
M. H.
, and
Zhou
,
Z. R.
,
2018
, “
Effect of Surface Roughness on Friction-Induced Noise: Exploring the Generation of Squeal at Sliding Friction Interface
,”
Wear
,
402–403
, pp.
80
90
. 10.1016/j.wear.2018.02.005
12.
Hanief
,
M.
, and
Wani
,
M. F.
,
2016
, “
Effect of Surface Roughness on Wear Rate During Running-in of En31-Steel: Model and Experimental Validation
,”
Mater. Lett.
,
176
, pp.
91
93
. 10.1016/j.matlet.2016.04.087
13.
Albers
,
A.
, and
Reichert
,
S.
,
2017
, “
On the Influence of Surface Roughness on the Wear Behavior in the Running-in Phase in Mixed-Lubricated Contacts With the Finite Element Method
,”
Wear
,
376–377
, pp.
1185
1193
. 10.1016/j.wear.2017.01.035
14.
Lloyd
,
A. I. G.
, and
Noël
,
R. E. J.
,
1988
, “
The Effect of Counterface Surface Roughness on the Wear of UHMWPE in Water and Oil-in-Water Emulsion
,”
Tribol. Int.
,
21
(
2
), pp.
83
88
. 10.1016/0301-679X(88)90079-5
15.
Horng
,
J. H.
,
Len
,
M. L.
, and
Lee
,
J. S.
,
2002
, “
The Contact Characteristics of Rough Surfaces in Line Contact During Running-in Process
,”
Wear
,
253
(
9–10
), pp.
899
913
. 10.1016/S0043-1648(02)00025-X
16.
Zhu
,
H.
,
Ge
,
S. R.
,
Li
,
G.
, and
Lv
,
L.
,
2007
, “
Test of Running-in Process and Preliminary Analysis of Running-in Attractors
,”
Lubr. Eng.
,
32
(
1
), pp.
1
3
.
17.
Zhu
,
H.
,
Ge
,
S. R.
,
Lv
,
L.
, and
Lu
,
B. B.
,
2008
, “
Evolvement Rule of Running-in Attractor
,”
Chin. J. Mech. Eng.
,
44
(
3
), pp.
99
104
. 10.3901/JME.2008.03.099
18.
Zhou
,
Y. K.
,
Zuo
,
X.
,
Zhu
,
H.
, and
Wei
,
T.
,
2018
, “
Development of Prediction Models of Running-in Attractor
,”
Tribol. Int.
,
117
, pp.
98
106
. 10.1016/j.triboint.2017.08.018
19.
Ding
,
C.
,
Zhu
,
H.
,
Sun
,
G. D.
,
Zhou
,
Y. K.
, and
Zuo
,
X.
,
2018
, “
Chaotic Characteristics and Attractor Evolution of Friction Noise During Friction Process
,”
Friction
,
6
(
1
), pp.
47
61
. 10.1007/s40544-017-0161-y
20.
Zhou
,
Y. K.
,
Zuo
,
X.
,
Zhu
,
H.
, and
Fan
,
Y. J.
,
2018
, “
System Dependence of Running-in Attractor Derived From Lubricated Sliding Contact of Steel Alloys 2100 and 1045
,”
ASME J. Tribol.
,
140
(
5
), p.
051601
. https://doi.org/10.1115/1.4039412
21.
Zhou
,
Y. K.
,
Zuo
,
X.
, and
Zhu
,
H.
,
2019
, “
Application of Chaos Theory to Optimize the Running-in Parameters by Using a Running-in Attractor
,”
Wear
,
420–421
, pp.
1
8
. 10.1016/j.wear.2018.12.012
22.
Zhou
,
Y. K.
,
Tang
,
X.
,
Zuo
,
X.
,
Zhu
,
H.
, and
Ma
,
C. B.
,
2019
, “
Incipient Wear Fault Diagnosis Using a Modified Change Detection Method
,”
Tribol. Int.
,
137
, pp.
164
172
. 10.1016/j.triboint.2019.04.036
23.
Zuo
,
X.
,
Tan
,
Y.
,
Zhou
,
Y. K.
,
Zhu
,
H.
, and
Fang
,
H. F.
,
2018
, “
Multifractal Analysis of Three-Dimensional Surface Topographies of GCr15 Steel and H70 Brass During Wear Process
,”
Measurement
,
125
, pp.
196
218
. 10.1016/j.measurement.2018.04.082
24.
Abdi
,
H.
, and
Williams
,
L. J.
,
2010
, “
Principal Component Analysis
,”
Wire. Comput. Stat.
,
2
(
4
), pp.
107
111
.
25.
Ding
,
C.
,
Zhu
,
H.
,
Sun
,
G.
,
Wei
,
C. L.
, and
Jiang
,
Y.
,
2018
, “
Investigation on Spatial Distribution and Evolution Features of the Running-in Attractor Based on a New Approach
,”
Ind. Lubr. Tribol.
,
70
(
9
), pp.
1636
1641
. 10.1108/ILT-06-2018-0217
26.
Ding
,
C.
,
2020
, “
Property and Evolution of the Running-in Attractor in an Actual Dynamic System
,”
Nonlinear. Dyn.
,
102
(
2
), pp.
1019
1031
. 10.1007/s11071-020-05696-2
You do not currently have access to this content.