Abstract

Preload, which is widely applied in linear motion ball guide (LMBG) to eliminate clearance and increase stiffness, gradually decreases owing to wear, resulting in the degradation of the load-bearing capability and dynamic response of LMBG. However, no solution can be found on the modeling of the preload degradation of LMBG considering raceway profile error, ball diameter error, etc. Therefore, this paper presented a new two-stage degradation model to predict the preload variation of LMBG with considering machining errors. The model was experimentally verified with the prediction accuracy much higher than the model considering no machining errors at either of the two wear stages, which demonstrates the effectiveness of considering machining errors. Additionally, the effects of waviness errors, external load, and feed speed on the preload degradation of LMBG were discussed. The simulation results indicate that the preload loss rate rises with the increase of waviness error, external load and feed speed. For obtaining a longer effective service life of LMBG, it is helpful to select appropriate external load and feed speed conditions and improve the processing technique as well as the machined surface quality.

References

1.
Sun
,
W.
,
Kong
,
X. X.
,
Wang
,
B.
, and
Li
,
X. Z.
,
2015
, “
Statics Modeling and Analysis of Linear Rolling Guideway Considering Rolling Balls Contact
,”
Proc. Inst. Mech. Eng., Part C
,
229
(
1
), pp.
168
179
.
2.
Ohta
,
H.
, and
Tanaka
,
K.
,
2010
, “
Vertical Stiffnesses of Preloaded Linear Guideway Type Ball Bearings Incorporating the Flexibility of the Carriage and Rail
,”
J. Tribol
,
132
(
1
), pp.
1
9
.
3.
Zou
,
H. T.
, and
Wang
,
B. L.
,
2015
, “
Investigation of the Contact Stiffness Variation of Linear Rolling Guides Due to the Effects of Friction and Wear During Operation
,”
Tribol. Int
,
92
, pp.
472
484
.
4.
Ohta
,
H.
, and
Hayashi
,
E.
,
2000
, “
Vibration of Linear Guideway Type Recirculating Linear Ball Bearings
,”
J. Sound. Vib
,
235
(
5
), pp.
847
861
.
5.
Wang
,
W.
,
Shen
,
G.
,
Zhang
,
Y.
,
Zhu
,
Z.
,
Li
,
C.
, and
Lu
,
H.
,
2021
, “
Dynamic Reliability Analysis of Mechanical System With Wear and Vibration Failure Modes
,”
Mech. Mach. Theory
,
163
, p.
104385
.
6.
Hung
,
J. P.
,
2009
, “
Load Effect on the Vibration Characteristics of a Stage With Rolling Guides
,”
J. Mech. Sci. Technol.
,
23
(
1
), pp.
89
99
.
7.
Lin
,
C. Y.
,
Hung
,
J. P.
, and
Lo
,
T. L.
,
2010
, “
Effect of Preload of Linear Guides on Dynamic Characteristics of a Vertical Column–Spindle System
,”
Int. J. Mach. Tool. Manuf.
,
50
(
8
), pp.
741
746
.
8.
Ohashi
,
T.
,
Shibata
,
H.
,
Futami
,
S.
,
Kishi
,
H.
, and
Sato
,
R.
,
2018
, “
Influence of Linear Ball Guide Preloads and Retainers on the Microscopic Motions of a Feed-Drive System
,”
J. Adv. Mech. Des. Syst.
,
12
(
5
), pp.
1
10
.
9.
Li
,
C.
,
Xu
,
M.
,
He
,
G.
,
Zhang
,
H.
,
Liu
,
Z.
,
He
,
D.
, and
Zhang
,
Y.
,
2020
, “
Time-Dependent Nonlinear Dynamic Model for Linear Guideway With Crowning
,”
Tribol. Int.
,
151
, p.
106413
.
10.
Wang
,
W.
,
Zhang
,
Y. M.
, and
Li
,
C. Y.
,
2017
, “
Dynamic Reliability Analysis of Linear Guides in Positioning Precision
,”
Mech. Mach. Theory
,
116
, pp.
451
464
.
11.
Oh
,
K. J.
,
Khim
,
G.
,
Park
,
C. H.
, and
Chung
,
S. C.
,
2019
, “
Explicit Modeling and Investigation of Friction Forces in Linear Motion Ball Guides
,”
Tribol. Int.
,
129
, pp.
16
28
.
12.
Cheng
,
D. J.
,
Xu
,
F.
,
Xu
,
S. H.
, and
Kim
,
S. J.
,
2020
, “
Investigation of the Frictional Behavior in a Roller Linear Motion Guide Under Mixed EHL
,”
Tribol. Trans
,
63
(
3
), pp.
528
542
.
13.
Al-Bender
,
F.
, and
Symens
,
W.
,
2005
, “
Characterization of Frictional Hysteresis in Ball-Bearing Guideways
,”
Wear
,
258
(
11–12
), pp.
1630
1642
.
14.
Alfares
,
M. A.
, and
Elsharkawy
,
A. A.
,
2003
, “
Effects of Axial Preloading of Angular Contact Ball Bearings on the Dynamics of a Grinding Machine Spindle System
,”
J. Mater. Process. Technol.
,
136
(
1–3
), pp.
48
59
.
15.
Oyanguren
,
A.
,
Larranaga
,
J.
, and
Ulacia
,
I.
,
2018
, “
Thermo-Mechanical Modelling of Ball Screw Preload Force Variation in Different Working Conditions
,”
Int. J. Adv. Manuf. Tech
,
97
(
1–4
), pp.
723
739
.
16.
Wei
,
C. C.
,
Liou
,
W. L.
, and
Lai
,
R. S.
,
2012
, “
Wear Analysis of the Offset Type Preloaded Ball–Screw Operating at High Speed
,”
Wear
,
292
, pp.
111
123
.
17.
Cheng
,
Q.
,
Qi
,
B. B.
,
Liu
,
Z. F.
,
Zhang
,
C.
, and
Xue
,
D.
,
2019
, “
An Accuracy Degradation Analysis of Ball Screw Mechanism Considering Time-Varying Motion and Loading Working Conditions
,”
Mecha. Mach. Theory
,
134
, pp.
1
23
.
18.
Zhao
,
J. J.
,
Lin
,
M. X.
,
Song
,
X. C.
, and
Guo
,
Q.
,
2020
, “
Analysis of the Precision Sustainability of the Preload Double-Nut Ball Screw With Consideration of the Raceway Wear
,”
Proc. Inst. Mech. Eng., Part J
,
234
(
9
), pp.
1530
1546
.
19.
Lijesh
,
K. P.
,
Khonsari
,
M. M.
, and
Kailas
,
S. V.
,
2018
, “
On the Integrated Degradation Coefficient for Adhesive Wear: a Thermodynamic Approach
,”
Wear
,
408
, pp.
138
150
.
20.
Kumar
,
R.
,
Kumar
,
S.
,
Prakash
,
B.
, and
Sethuramiah
,
A.
,
2000
, “
Assessment of Engine Liner Wear From Bearing Area Curves
,”
Wear
,
239
(
2
), pp.
282
286
.
21.
Belem
,
T.
,
Souley
,
M.
, and
Homand
,
F.
,
2009
, “
Method for Quantification of Wear of Sheared Joint Walls Based on Surface Morphology
,”
Rock. Mech. Rock. Eng.
,
42
(
6
), pp.
883
910
.
22.
Svahn
,
F.
,
Kassman-Rudolphi
,
A.
, and
Wallen
,
E.
,
2003
, “
The Influence of Surface Roughness on Friction and Wear of Machine Element Coatings
,”
Wear
,
254
(
11
), pp.
1092
1098
.
23.
Wu
,
C. W.
, and
Zheng
,
L. Q.
,
1991
, “
Effect of Waviness and Roughness on Lubricated Wear Related to Running-in
,”
Wear
,
147
(
2
), pp.
323
334
.
24.
Jahanmir
,
S.
, and
Suh
,
N. P.
,
1977
, “
Surface Topography and Integrity Effects on Sliding Wear
,”
Wear
,
44
(
1
), pp.
87
99
.
25.
Xu
,
L. X.
, and
Li
,
Y. G.
,
2015
, “
Modeling of a Deep-Groove Ball Bearing With Waviness Defects in Planar Multibody System
,”
Multibody. Syst. Dyn.
,
33
(
3
), pp.
229
258
.
26.
Tong
,
V. C.
,
Kwon
,
S. W.
, and
Hong
,
S. W.
,
2020
, “
Modeling of Moving Table With Linear Roller Guides Subjected to Geometric Errors in Guide Rails
,”
Int. J. Precis. Eng. Manuf.
,
21
(
10
), pp.
1903
1919
.
27.
Majda
,
P.
,
2012
, “
Modeling of Geometric Errors of Linear Guideway and Their Influence on Joint Kinematic Error in Machine Tools
,”
Precis. Eng.
,
36
(
3
), pp.
369
378
.
28.
Tang
,
H.
,
Duan
,
J. A.
, and
Zhao
,
Q. C.
,
2017
, “
A Systematic Approach on Analyzing the Relationship Between Straightness & Angular Errors and Guideway Surface in Precise Linear Stage
,”
Int. J. Mach. Tool. Manuf.
,
120
, pp.
12
19
.
29.
Zha
,
J.
,
Xue
,
F.
, and
Chen
,
Y. L.
,
2017
, “
Straightness Error Modeling and Compensation for Gantry Type Open Hydrostatic Guideways in Grinding Machine
,”
Int. J. Mach. Tool. Manuf.
,
112
, pp.
1
6
.
30.
Wang
,
Z. W.
,
Zhao
,
W. H.
,
Chen
,
Y. L.
, and
Lu
,
B.
,
2013
, “
Prediction of the Effect of Speed on Motion Errors in Hydrostatic Guideways
,”
Int. J. Mach. Tool. Manuf.
,
64
, pp.
78
84
.
31.
Yu
,
H.
,
Ran
,
Y.
,
Zhang
,
G. B.
, and
Ying
,
G.
,
2021
, “
A Dynamic Time-Varying Reliability Model for Linear Guides Considering Wear Degradation
,”
Nonlinear. Dyn
,
103
(
1
), pp.
699
714
.
32.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Rolling Bearing Analysis
,
Wiley
,
New York
.
33.
Liu
,
J.
,
Li
,
X. B.
,
Ding
,
S. Z.
, and
Pang
,
R.
,
2020
, “
A Time-Varying Friction Moment Calculation Method of an Angular Contact Ball Bearing with the Waviness Error
,”
Mech. Mach. Theory
,
148
, pp.
1
23
.
34.
Wang
,
X. Y.
,
Zhou
,
C. G.
, and
Ou
,
Y.
,
2019
, “
Experimental Analysis of the Wear Coefficient for the Rolling Linear Guide
,”
Adv. Mech. Eng.
,
11
(
1
), pp.
1
7
.
35.
Wang
,
X. Y.
,
Feng
,
H. T.
,
Zhou
,
C. G.
, and
Ye
,
K. Q.
,
2020
, “
A Thermal Model for Real-Time Temperature Forecast of Rolling Linear Guide Considering Loading Working Conditions
,”
Int. J. Adv. Manuf. Tech.
,
109
(
7
), pp.
2249
2271
.
36.
Khader
,
I.
,
Kürten
,
D.
, and
Kailer
,
A.
,
2012
, “
A Study on the Wear of Silicon Nitride in Rolling–Sliding Contact
,”
Wear
,
296
(
1–2
), pp.
630
637
.
37.
Khader
,
I.
,
Renz
,
A.
, and
Kailer
,
A.
,
2017
, “
A Wear Model for Silicon Nitride in dry Sliding Contact Against a Nickel-Base Alloy
,”
Wear
,
376
, pp.
352
362
.
38.
Liu
,
P. T.
,
Ma
,
L. F.
,
Zhi
,
C. C.
,
Ma
,
Z. Y.
,
Zhou
,
C. L.
,
Zhao
,
G. H.
,
Fan
,
Q. H.
, and
Jia
,
W. T.
,
2021
, “
Effect of Annealing on Heavy-Load Wear Performance of Wear Resisting Steel–Carbon Steel–Cladded Plate
,”
Tribol. Trans
,
64
(
1
), pp.
101
110
.
You do not currently have access to this content.