Abstract
This work presents a comprehensive numerical study of thermal elastohydrodynamic lubrication performance in axially crowned rollers, based on a full-system finite element approach. Axial crowning has always been introduced to finite line contacts, as a mean for improving film thickness. Its influence on friction has often been overlooked though. The current work reveals that axial crowning has a negative influence on friction, increasing it significantly with respect to the reference case of straight rollers. It is shown that, with increased crowning height (or reduced crowning radius), minimum film thickness is increased, but so is friction. Therefore, film thickness enhancement comes at the expense of a deterioration in friction. Besides, achieving sufficient enhancements in minimum film thickness would require using relatively low crowning radii, which would lead to a substantial increase in friction. The frictional increase is traced back to an overall increase in contact pressures and effective contact area within the lubricating conjunction. It is also shown that, when film thickness is the most critical design parameter, the best compromise between enhanced film thickness and deteriorated friction would be to combine axial crowning with roller-end profiling. However, when friction is the most critical design parameter, a simple roller-end profiling would offer the best compromise.