Graphical Abstract Figure
Abstract
Based on a fully flooded transient non-Newtonian thermoelastic fluid lubrication analysis of representative engineering ceramics and steels with different thermal conductivities and surface roughness, it is found that the material combination that causes the reduction of the maximum film pressure is closely related to the thermal conductivity of the contact materials and the surface temperature of the smooth-surfaced materials, and the maximum pressure reduction method is proposed. The results make a significant contribution to the design of mechanical elements involving contact between materials with different thermal conductivities and surface roughness.
References
1.
Ai
, X.
, 1998
, “Effect of Three-Dimensional Random Surface Roughness on Fatigue Life of a Lubricated Contact
,” ASME J. Tribol.
, 120
(2
), pp. 159
–164
. 2.
Dowson
, D.
, and Ehret
, P.
, 1999
, “Past, Present and Future Studies in Elastohydrodynamics
,” Proc. Inst. Mech. Eng., Part J
, 213
(5
), pp. 317
–333
. 3.
Olver
, A. V.
, 2005
, “The Mechanism of Rolling Contact Fatigue: An Update
,” Proc. Inst. Mech. Eng., Part J
, 219
(5
), pp. 313
–330
. 4.
Spikes
, H. A.
, 2006
, “Sixty Years of EHL
,” Lubric. Sci.
, 18
(4
), pp. 265
–391
. 5.
Qiao
, H.
, Evans
, H. P.
, and Snidle
, R. W.
, 2008
, “Comparison of Fatigue Model Results for Rough Surface Elastohydrodynamic Lubrication
,” Proc. Inst. Mech. Eng., Part J
, 222
(3
), pp. 381
–393
. 6.
Lugt
, P. M.
, and Morales-Espejel
, G. E.
, 2011
, “A Review of Elasto-Hydrodynamic Lubrication Theory
,” STLE Tribol. Trans.
, 54
(3
), pp. 470
–496
. 7.
[]
Zhu
, D.
, and Wang
, Q. J.
, 2011
, “Elastohydrodynamic Lubrication: A Gateway to Interfacial Mechanics—Review and Prospect
,” ASME J. Tribol.
, 133
(4
), p. 041001
. 8.
Morales-Espejel
, G. E.
, 2014
, “Surface Roughness Effects in Elastohydrodynamic Lubrication: A Review With Contributions
,” Proc. Inst. Mech. Eng., Part J
, 228
(11
), pp. 1217
–1242
. 9.
Yang
, P.
, Qu
, S.
, Kaneta
, M.
, and Nishikawa
, H.
, 2001
, “Formation of Steady Dimples in Point TEHL Contacts
,” ASME J. Tribol.
, 123
(1
), pp. 42
–49
. 10.
Kaneta
, M.
, and Yang
, P.
, 2003
, “Effects of Thermal Conductivity of Contacting Surfaces on Point EHL Contacts
,” ASME J. Tribol.
, 125
(4
), pp. 731
–738
. 11.
Kaneta
, M.
, Yang
, P.
, Krupka
, I.
, and Hartl
, M.
, 2015
, “Fundamentals of Thermal Elastohydrodynamic Lubrication in Si3N4 and Steel Circular Contacts
,” Proc. Inst. Mech. Eng., Part J
, 229
(8
), pp. 929
–939
. 12.
Kaneta
, M.
, Sperka
, P.
, Yang
, P.
, Krupka
, I.
, Yang
, P.
, and Hartl
, M.
, 2018
, “Thermal Elastohydrodynamic Lubrication of Ceramic Materials
,” STLE Trans.
, 61(5)
, pp. 869
–879
. 13.
Cameron
, A.
, 1958
, “The Viscosity Wedge
,” ASLE Trans.
, 1
(2
), pp. 248
–253
. 14.
Kaneta
, M.
, Matsuda
, K.
, and Nishikawa
, H.
, 2022
, “Effects of Thermal Properties of Contact Materials and Slide-Roll Ratio in Elastohydrodynamic Lubrication
,” ASME J. Tribol.
, 144
(6
), p. 061603
. 15.
Kaneta
, M.
, and Matsuda
, K.
, 2023
, “Numerical Study on Method for Reducing Film Pressure and Its Fluctuation Due to Surface Roughness in Elastohydrodynamic Lubrication Contact
,” ASME J. Tribol.
, 145
(3
), p. 034101
. 16.
Spikes
, H. A.
, and Zhang
, J.
, 2014
, “History, Origins and Prediction of Elastohydrodynamic Friction
,” Tribol. Lett.
, 56(1)
, pp. 1
–25
. 17.
Bair
, S.
, Vergne
, P.
, Kumar
, P.
, Poll
, G.
, Krupka
, I.
, Hartl
, M.
, Habchi
, W.
, and Larsson
, R.
, 2015
, “Comments on “History, Origins and Prediction of Elastohydrodynamic Friction,” by Spikes and Jie
,” Tribol. Lett.
, 58
(1
), p. 16
. 18.
Spikes
, H.
, and Zhang
, J.
, 2015
, “Reply to the Comment by Scott Bair, Philippe Vergne, Punit Kumar, Gerhard Poll, Ivan Krupka, Martin Hartl, Wassim Habchi, Roland Larsson, on “History, Origins and Prediction of Elastohydrodynamic Friction,” by Spikes and Jie in Tribology Letters
,” Tribol. Lett.
, 58
(1
), p. 17
. 19.
Liu
, X.
, Jiang
, M.
, Yang
, P.
, and Kaneta
, M.
, 2005
, “Non-Newtonian Thermal Analyses of Point EHL Contacts Using the Eyring Model
,” ASME J. Tribol.
, 127
(1
), pp. 70
–81
. 20.
Yang
, P.
, and Liu
, X.
, 2009
, “Effect of Solid Body Temperature on the Non-Newtonian Thermal Elastohydrodynamic Lubrication Behaviour in Point Contacts
,” Proc. IMechE., Part J, J. Eng. Tribol.
, 223
(7
), pp. 959
–969
. 21.
Kumar
, P.
, Anuradha
, P.
, and Khonsari
, M. M.
, 2010
, “Some Important Aspects of Thermal Elastohydrodynamic Lubrication
,” Proc. Inst. Mech. Eng., Part C
, 224
(12
), pp. 2588
–2598
. 22.
Larsson
, R.
, Larsson
, P. O.
, Eriksson
, E.
, Sjöberg
, M.
, and Höglund
, E.
, 2000
, “Lubricant Properties for Input to Hydrodynamic and Elastohydrodynamic Lubrication Analyses
,” Proc. Inst. Mech. Eng., Part J
, 214
(1
), pp. 17
–27
. 23.
Larsson
, R.
, and Andersson
, O.
, 2000
, “Lubricant Thermal Conductivity and Heat Capacity Under High Pressure
,” Proc. Inst. Mech. Eng., Part J
, 214
(4
), pp. 337
–342
. 24.
Habchi
, W.
, Vergne
, P.
, Bair
, S.
, Andersson
, O.
, Eyheramendy
, D.
, and Morales-Espejel
, G. E.
, 2010
, “Influence of Pressure and Temperature Dependence of Thermal Properties of a Lubricant on the Behaviour of Circular TEHD Contacts
,” Tribol. Int.
, 43
(10
), pp. 1842
–1850
. 25.
Reddyhoff
, T.
, Schmidt
, A.
, and Spikes
, H.
, 2019
, “Thermal Conductivity and Flash Temperature
,” Tribol. Lett.
, 67(1)
, p. 22
. 26.
Habchi
, W.
, and Bair
, S.
, 2020
, “The Role of the Thermal Conductivity of Steel in Quantitative Elastohydrodynamic Friction
,” Tribol. Int.
, 142
, p. 105970
. 27.
Liu
, H. C.
, Zhang
, B. B.
, Bader
, N.
, Poll
, G.
, and Venner
, C. H.
, 2020
, “Influences of Solid and Lubricant Thermal Conductivity on Traction in an EHL Circular Contact
,” Tribol. Int.
, 146
, p. 106059
. 28.
Ohno
, N.
, 2007
, “High-Pressure Behavior of Toroidal CVT Fluid for Automobile
,” Tribol. Int.
, 40
(2
), pp. 233
–238
. Copyright © 2024 by ASME
You do not currently have access to this content.