Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Based on a fully flooded transient non-Newtonian thermoelastic fluid lubrication analysis of representative engineering ceramics and steels with different thermal conductivities and surface roughness, it is found that the material combination that causes the reduction of the maximum film pressure is closely related to the thermal conductivity of the contact materials and the surface temperature of the smooth-surfaced materials, and the maximum pressure reduction method is proposed. The results make a significant contribution to the design of mechanical elements involving contact between materials with different thermal conductivities and surface roughness.

References

1.
Ai
,
X.
,
1998
, “
Effect of Three-Dimensional Random Surface Roughness on Fatigue Life of a Lubricated Contact
,”
ASME J. Tribol.
,
120
(
2
), pp.
159
164
.
2.
Dowson
,
D.
, and
Ehret
,
P.
,
1999
, “
Past, Present and Future Studies in Elastohydrodynamics
,”
Proc. Inst. Mech. Eng., Part J
,
213
(
5
), pp.
317
333
.
3.
Olver
,
A. V.
,
2005
, “
The Mechanism of Rolling Contact Fatigue: An Update
,”
Proc. Inst. Mech. Eng., Part J
,
219
(
5
), pp.
313
330
.
4.
Spikes
,
H. A.
,
2006
, “
Sixty Years of EHL
,”
Lubric. Sci.
,
18
(
4
), pp.
265
391
.
5.
Qiao
,
H.
,
Evans
,
H. P.
, and
Snidle
,
R. W.
,
2008
, “
Comparison of Fatigue Model Results for Rough Surface Elastohydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng., Part J
,
222
(
3
), pp.
381
393
.
6.
Lugt
,
P. M.
, and
Morales-Espejel
,
G. E.
,
2011
, “
A Review of Elasto-Hydrodynamic Lubrication Theory
,”
STLE Tribol. Trans.
,
54
(
3
), pp.
470
496
.
7.
[]
Zhu
,
D.
, and
Wang
,
Q. J.
,
2011
, “
Elastohydrodynamic Lubrication: A Gateway to Interfacial Mechanics—Review and Prospect
,”
ASME J. Tribol.
,
133
(
4
), p.
041001
.
8.
Morales-Espejel
,
G. E.
,
2014
, “
Surface Roughness Effects in Elastohydrodynamic Lubrication: A Review With Contributions
,”
Proc. Inst. Mech. Eng., Part J
,
228
(
11
), pp.
1217
1242
.
9.
Yang
,
P.
,
Qu
,
S.
,
Kaneta
,
M.
, and
Nishikawa
,
H.
,
2001
, “
Formation of Steady Dimples in Point TEHL Contacts
,”
ASME J. Tribol.
,
123
(
1
), pp.
42
49
.
10.
Kaneta
,
M.
, and
Yang
,
P.
,
2003
, “
Effects of Thermal Conductivity of Contacting Surfaces on Point EHL Contacts
,”
ASME J. Tribol.
,
125
(
4
), pp.
731
738
.
11.
Kaneta
,
M.
,
Yang
,
P.
,
Krupka
,
I.
, and
Hartl
,
M.
,
2015
, “
Fundamentals of Thermal Elastohydrodynamic Lubrication in Si3N4 and Steel Circular Contacts
,”
Proc. Inst. Mech. Eng., Part J
,
229
(
8
), pp.
929
939
.
12.
Kaneta
,
M.
,
Sperka
,
P.
,
Yang
,
P.
,
Krupka
,
I.
,
Yang
,
P.
, and
Hartl
,
M.
,
2018
, “
Thermal Elastohydrodynamic Lubrication of Ceramic Materials
,”
STLE Trans.
,
61(5)
, pp.
869
879
.
13.
Cameron
,
A.
,
1958
, “
The Viscosity Wedge
,”
ASLE Trans.
,
1
(
2
), pp.
248
253
.
14.
Kaneta
,
M.
,
Matsuda
,
K.
, and
Nishikawa
,
H.
,
2022
, “
Effects of Thermal Properties of Contact Materials and Slide-Roll Ratio in Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
144
(
6
), p.
061603
.
15.
Kaneta
,
M.
, and
Matsuda
,
K.
,
2023
, “
Numerical Study on Method for Reducing Film Pressure and Its Fluctuation Due to Surface Roughness in Elastohydrodynamic Lubrication Contact
,”
ASME J. Tribol.
,
145
(
3
), p.
034101
.
16.
Spikes
,
H. A.
, and
Zhang
,
J.
,
2014
, “
History, Origins and Prediction of Elastohydrodynamic Friction
,”
Tribol. Lett.
,
56(1)
, pp.
1
25
.
17.
Bair
,
S.
,
Vergne
,
P.
,
Kumar
,
P.
,
Poll
,
G.
,
Krupka
,
I.
,
Hartl
,
M.
,
Habchi
,
W.
, and
Larsson
,
R.
,
2015
, “
Comments on “History, Origins and Prediction of Elastohydrodynamic Friction,” by Spikes and Jie
,”
Tribol. Lett.
,
58
(
1
), p.
16
.
18.
Spikes
,
H.
, and
Zhang
,
J.
,
2015
, “
Reply to the Comment by Scott Bair, Philippe Vergne, Punit Kumar, Gerhard Poll, Ivan Krupka, Martin Hartl, Wassim Habchi, Roland Larsson, on “History, Origins and Prediction of Elastohydrodynamic Friction,” by Spikes and Jie in Tribology Letters
,”
Tribol. Lett.
,
58
(
1
), p.
17
.
19.
Liu
,
X.
,
Jiang
,
M.
,
Yang
,
P.
, and
Kaneta
,
M.
,
2005
, “
Non-Newtonian Thermal Analyses of Point EHL Contacts Using the Eyring Model
,”
ASME J. Tribol.
,
127
(
1
), pp.
70
81
.
20.
Yang
,
P.
, and
Liu
,
X.
,
2009
, “
Effect of Solid Body Temperature on the Non-Newtonian Thermal Elastohydrodynamic Lubrication Behaviour in Point Contacts
,”
Proc. IMechE., Part J, J. Eng. Tribol.
,
223
(
7
), pp.
959
969
.
21.
Kumar
,
P.
,
Anuradha
,
P.
, and
Khonsari
,
M. M.
,
2010
, “
Some Important Aspects of Thermal Elastohydrodynamic Lubrication
,”
Proc. Inst. Mech. Eng., Part C
,
224
(
12
), pp.
2588
2598
.
22.
Larsson
,
R.
,
Larsson
,
P. O.
,
Eriksson
,
E.
,
Sjöberg
,
M.
, and
Höglund
,
E.
,
2000
, “
Lubricant Properties for Input to Hydrodynamic and Elastohydrodynamic Lubrication Analyses
,”
Proc. Inst. Mech. Eng., Part J
,
214
(
1
), pp.
17
27
.
23.
Larsson
,
R.
, and
Andersson
,
O.
,
2000
, “
Lubricant Thermal Conductivity and Heat Capacity Under High Pressure
,”
Proc. Inst. Mech. Eng., Part J
,
214
(
4
), pp.
337
342
.
24.
Habchi
,
W.
,
Vergne
,
P.
,
Bair
,
S.
,
Andersson
,
O.
,
Eyheramendy
,
D.
, and
Morales-Espejel
,
G. E.
,
2010
, “
Influence of Pressure and Temperature Dependence of Thermal Properties of a Lubricant on the Behaviour of Circular TEHD Contacts
,”
Tribol. Int.
,
43
(
10
), pp.
1842
1850
.
25.
Reddyhoff
,
T.
,
Schmidt
,
A.
, and
Spikes
,
H.
,
2019
, “
Thermal Conductivity and Flash Temperature
,”
Tribol. Lett.
,
67(1)
, p.
22
.
26.
Habchi
,
W.
, and
Bair
,
S.
,
2020
, “
The Role of the Thermal Conductivity of Steel in Quantitative Elastohydrodynamic Friction
,”
Tribol. Int.
,
142
, p.
105970
.
27.
Liu
,
H. C.
,
Zhang
,
B. B.
,
Bader
,
N.
,
Poll
,
G.
, and
Venner
,
C. H.
,
2020
, “
Influences of Solid and Lubricant Thermal Conductivity on Traction in an EHL Circular Contact
,”
Tribol. Int.
,
146
, p.
106059
.
28.
Ohno
,
N.
,
2007
, “
High-Pressure Behavior of Toroidal CVT Fluid for Automobile
,”
Tribol. Int.
,
40
(
2
), pp.
233
238
.
You do not currently have access to this content.