Abstract

A computational approach employing the boundary element method (BEM) and a deep artificial neural network (ANN) is proposed to accurately predict the real contact area (RCA) for rough surfaces. A BEM-generated dataset is utilized to develop an optimized ANN model for the prediction of RCA based on surface topography parameters and applied load. The Bayesian optimized ANN model, employing a logsig transfer function in hidden layers and having a 5-44-44-1 architecture, predicts the RCA with a mean error of ≈6%. Shapley values are utilized for global sensitivity analysis, revealing that applied load and surface roughness are the most influential factors affecting RCA. The generalization capability of the ANN model is validated through comparisons with predictions on test data, demonstrating superior accuracy and computational efficiency over traditional numerical methods. The influence of surface topography parameters reveals that the higher surface roughness reduces RCA due to increased asperity interaction, while higher skewness promotes a larger RCA by increasing the number of contact points. Kurtosis influences RCA nonlinearly, with higher kurtosis yielding lower RCA at low loads but higher RCA at high loads due to asperity distribution characteristics. The optimized deep neural network model not only predicts the real contact area with high accuracy but also is significantly faster than boundary element simulations, conclusively demonstrating its potential to accelerate the design and optimization process in rough surface contact mechanics.

References

1.
Li
,
B.
,
Li
,
P.
,
Zhou
,
R.
,
Feng
,
X. Q.
, and
Zhou
,
K.
,
2022
, “
Contact Mechanics in Tribological and Contact Damage-Related Problems: A Review
,”
Tribol. Int.
,
171
, p.
107534
.
2.
Kalliorinne
,
K.
,
Larsson
,
R.
,
Pérez-Ràfols
,
F.
,
Liwicki
,
M.
, and
Almqvist
,
A.
,
1957
, “
Artificial Neural Network Architecture for Prediction of Contact Mechanical Response
,”
Front. Mech. Eng.
,
6
, p.
579825
.
3.
Almqvist
,
A.
,
Campañá
,
C.
,
Prodanov
,
N.
, and
Persson
,
B. N. J.
,
2011
, “
Interfacial Separation Between Elastic Solids With Randomly Rough Surfaces: Comparison Between Theory and Numerical Techniques
,”
J. Mech. Phys. Solids
,
59
(
11
), pp.
2355
2369
.
4.
Almqvist
,
A.
,
Sahlin
,
F.
,
Larsson
,
R.
, and
Glavatskih
,
S.
,
2007
, “
On the Dry Elasto-Plastic Contact of Nominally Flat Surfaces
,”
Tribol. Int.
,
40
(
4
), pp.
574
579
.
5.
ISO Central Secretary
,
2012
,
Geometrical Product Specifications (GPS)—Surface Texture: Areal—Part 2: Terms, Definitions and Surface Texture Parameters
,
International Organization for Standardization
,
Geneva, CH
. https://www.iso.org/standard/42785.html
6.
Pérez-Ràfols
,
F.
, and
Almqvist
,
A.
,
2019
, “
Generating Randomly Rough Surfaces With Given Height Probability Distribution and Power Spectrum
,”
Tribol. Int.
,
131
, pp.
591
604
.
7.
Rapetto
,
M. P.
,
Almqvist
,
A.
,
Larsson
,
R.
, and
Lugt
,
P. M.
,
2009
, “
On the Influence of Surface Roughness on Real Area of Contact in Normal, Dry, Friction Free, Rough Contact by Using a Neural Network
,”
Wear
,
266
(
5
), pp.
592
595
.
8.
Greenwood
,
J.
, and
Williamson
,
J.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. Lond. A
,
295
(
1442
), pp.
300
319
.
9.
Greenwood
,
J.
, and
Tripp
,
J.
,
1970
, “
The Contact of Two Nominally Flat Rough Surfaces
,”
Proc. Inst. Mech. Eng.
,
185
(
1
), pp.
625
634
.
10.
Archard
,
J. F.
,
1957
, “
Elastic Deformation and the Laws of Friction
,”
Proc. R. Soc. Lond. A
,
243
(
1233
), pp.
190
205
.
11.
Jackson
,
R. L.
,
Xu
,
Y.
,
Saha
,
S.
, and
Schulze
,
K. D.
,
2021
, “
Elastic Rough Surface Contact and the Root Mean Square Slope of Measured Surfaces Over Multiple Scales
,”
Fractal Fract.
,
5
(
2
), p.
44
.
12.
Xu
,
Y.
, and
Jackson
,
R. L.
,
2017
, “
Statistical Models of Nearly Complete Elastic Rough Surface Contact-Comparison With Numerical Solutions
,”
Tribol. Int.
,
105
, pp.
274
291
.
13.
Nayak
,
P. R.
,
1971
, “
Random Process Model of Rough Surfaces
,”
ASME J. Lubr. Technol.
,
93
(
3
), pp.
398
407
.
14.
Onions
,
R. A.
, and
Archard
,
J. F.
,
1973
, “
The Contact of Surfaces Having a Random Structure
,”
J. Phys. D: Appl. Phys.
,
6
(
3
), pp.
289
304
.
15.
Kotwal
,
C. A.
, and
Bhushan
,
B.
,
1996
, “
Contact Analysis of Non-Gaussian Surfaces for Minimum Static and Kinetic Friction and Wear
,”
Tribol. Trans.
,
39
(
4
), pp.
890
898
.
16.
Persson
,
B. N. J.
,
2006
, “
Contact Mechanics for Randomly Rough Surfaces
,”
Surf. Sci. Rep.
,
61
(
4
), pp.
201
227
.
17.
Müser
,
M. H.
,
Dapp
,
W. B.
,
Bugnicourt
,
R.
,
Sainsot
,
P.
,
Lesaffre
,
N.
, and
Lubrecht
,
A. A.
,
2017
, “
Meeting the Contact-Mechanics Challenge
,”
Tribol. Lett.
,
65
(
4
), p.
118
.
18.
Xu
,
Y.
, and
Jackson
,
R. L.
,
2019
, “
Boundary Element Method (BEM) Applied to The Rough Surface Contact vs. BEM In Computational Mechanics
,”
Friction
,
7
(
4
), pp.
359
371
.
19.
Andersson
,
T.
,
Fredriksson
,
B.
, and
Allan-Persson
,
B. G.
,
1980
, “The Boundary Element Method Applied to Two-Dimensional Contact Problems,”
New Developments in Boundary Element Methods
,
C. A.
Brebbia
, ed.,
CML Publishers
,
Southampton
.
20.
Rosenkranz
,
A.
,
Marian
,
M.
,
Profito
,
F. J.
,
Aragon
,
N.
, and
Shah
,
R.
,
2021
, “
The Use of Artificial Intelligence in Tribology—A Perspective
,”
Lubricants
,
9
(
1
), p.
2
.
21.
Konig
,
F.
,
Sous
,
C.
,
Ouald Chaib
,
A.
, and
Jacobs
,
G.
,
2021
, “
Machine Learning Based Anomaly Detection and Classification of Acoustic Emission Events for Wear Monitoring in Sliding Bearing Systems
,”
Trib. Int.
,
155
. p.
106811
.
22.
Bhaumik
,
S.
,
Pathak
,
S. D.
,
Dey
,
S.
, and
Datta
,
S.
,
2010
, “
Artificial Intelligence Based Design of Multiple Friction Modifiers Dispersed Castor Oil and Evaluating its Tribological Properties
,”
Trib. Int.
,
140
. p.
105813
.
23.
Nasir
,
T.
,
Yousif
,
B. F.
,
McWilliam
,
S.
,
Salih
,
N. D.
, and
Hui
,
L. T.
,
2010
, “
An Artificial Neural Network for Prediction of the Friction Coefficient of Multi-Layer Polymeric Composites in Three Different Orientations
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
224
(
2
), pp.
419
429
.
24.
Nirmal
,
U.
,
2010
, “
Prediction of Friction Coefficient of Treated Betelnut Fibre Reinforced Polyester (T-BFRP) Composite Using Artificial Neural Networks
,”
Tribol. Int.
,
43
(
8
), pp.
1417
1429
.
25.
Cirovíc
,
V.
,
Aleksendríc
,
D.
, and
Mladenovíc
D.
,
2012
, “
Braking Torque Control Using Recurrent Neural Networks
,”
Proc. Inst. Mech. Eng. D: J. Automobile Eng.
,
226
(
6
), pp.
754
766
.
26.
Moder
,
J.
,
Bergmann
,
P.
, and
Grun
,
F.
,
2018
, “
Lubrication Regime Classification of Hydrodynamic Journal Bearings by Machine Learning Using Torque Data
,”
Lubricants
,
6
(
4
), p.
108
.
27.
Prajapati
,
D. K.
,
Katiyar
,
J. K.
, and
Prakash
,
C.
,
2023
, “
Machine Learning Approach for The Prediction of Mixed Lubrication Parameters for Different Surface Topographies of Non-Conformal Rough Contacts
,”
Ind. Lubr. Tribol.
,
75
(
9
), pp.
1022
1030
.
28.
Polonsky
,
I. A.
, and
Keer
,
L. M.
,
1999
, “
A Numerical Method for Solving Rough Contact Problems Based on the Multi-Level Multisummation and Conjugate Gradient Techniques
,”
Wear
,
231
(
2
), pp.
206
219
.
29.
Ovcharenko
,
A.
,
Halperin
,
G.
,
Etsion
,
I.
, and
Varenberg
,
M.
,
2006
, “
A Novel Test Rig for In Situ and Real Time Optical Measurement of the Contact Area Evolution During Pre-Sliding of a Spherical Contact
,”
Tribol. Lett.
,
23
(
1
), pp.
55
63
.
30.
Akchurin
,
A.
,
Bosman
,
R.
,
Lugt
,
P. M.
, and
Drogen
,
M. V.
,
2015
, “
On a Model for the Prediction of the Friction Coefficient in Mixed Lubrication Based on a Load-Sharing Concept With Measured Surface Roughness
,”
Tribol. Lett.
,
59
(
1
), p.
19
.
31.
Suman
,
S.
,
Singh
,
S.
,
Mitra
,
S.
, and
Kumar
,
M.
,
2024
, “
Deep Neural Network Model for Predicting Thermal-Hydraulic Performance of a Solar Air Heater With Artificial Roughness: Sensitivity, Generalization Capacity, and Computational Efficiency
,”
Process Saf. Environ. Prot.
,
188
, pp.
821
833
.
You do not currently have access to this content.