Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In the dynamic era of advanced manufacturing technology, laser powder bed fusion (L-PBF) have gained popularity in different domains due to its capability to build parts from bulk to miniature size with higher efficiency and precision. Ti–6Al–4V, a bio-inert metal alloy, possesses a unique blend of profound mechanical and biocompatibility attributes, making it highly suitable for implant applications. This study reports the fabrication of Ti–6Al–4V alloy for implant application via the L-PBF process. The objective is to enhance the micromechanical and tribological properties of the fabricated Ti–6Al–4V component by identifying the optimal processing conditions. The fabricated component exhibited a maximum hardness of 395.26 HV and a minimum frictional coefficient of 0.3193 at 195 W laser power, 900 mm/s scanning speed, and 70 μm hatching distance. The wear-rate and absorbed wear volume were measured as 1.265 × 10−5 mm3 N−1 min−1 and 0.3162 mm3, respectively, under sliding conditions. At optimal processing state, the printed surface displayed an alpha-phase morphology with homogeneous microstructural features due to uniform melting of powder particles that improved bond strength and minimized defects. This study offers an experimental insight into operational attributes, paving the way for accelerated production of Ti–6Al–4V alloy components using the L-PBF method and tailoring tribological properties to meet specific functional requirements.

References

1.
Li
,
Y.
,
Tian
,
P.
,
Cao
,
H.
,
Wang
,
Y.
,
Zhao
,
X.
,
Han
,
S.
, and
Wang
,
C.
,
2024
, “
Remarkable Enhancement of Corrosion Resistance and Tribological Properties of Chitosan-MXene Based Hydrogel Coating on the Surface of Ti6Al4V Alloy
,”
Tribol. Int.
,
192
, p.
109229
.
2.
Narayana
,
T.
, and
Saleem
,
S. S.
,
2024
, “
Comparative Investigation and Characterization of the Nano-mechanical and Tribological Behavior of RF Magnetron Sputtered TiN, CrN, and TiB2 Coating on Ti6Al4V Alloy
,”
Tribol. Int.
,
193
, p.
109348
.
3.
Jeyaprakash
,
N.
, and
Yang
,
C.-H.
,
2021
, “Friction, Lubrication, and Wear,”
Tribology in Materials and Manufacturing—Wear, Friction and Lubrication
,
A.
Patnaik
,
T.
Singh
, and
V.
Kukshal
, eds.,
IntechOpen
,
Taiwan
, p.
346
.
4.
Qu
,
J.
,
Blau
,
P. J.
,
Watkins
,
T. R.
,
Cavin
,
O. B.
, and
Kulkarni
,
N. S.
,
2005
, “
Friction and Wear of Titanium Alloys Sliding Against Metal, Polymer, and Ceramic Counterfaces
,”
Wear
,
258
(
9
), pp.
1348
1356
.
5.
Katiyar
,
J. K.
, and
Rao
,
T.
,
2023
, “
Sustainable Tribology for Reliability and Efficiency
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
237
(
8
), pp.
1670
1679
.
6.
Huang
,
J.
,
Zhang
,
W.
,
Fang
,
W.
, and
Yi
,
Y.
,
2023
, “
Tribology Properties of Additively Manufactured Ti6Al4V Alloy After Heat Treatment
,”
Tribol. Int.
,
185
, p.
108485
.
7.
Marimuthu
,
M.
, and
Kunjan
,
C.
,
2024
, “
Process Parameters for Three-Dimensional Specimens Made of Ti6Al4V Materials Using Additive Manufacturing: A Review
,”
Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
8.
Liang
,
X.
,
Du
,
P.
,
Li
,
S.
, and
Zhang
,
C.
,
2022
, “
Tribological Properties of Additive Manufactured Ti6Al4V Against Cemented Carbide Under Dry Sliding Conditions
,”
Tribol. Int.
,
167
, p.
107358
.
9.
Zhuo
,
Y.
,
Han
,
Z.
,
An
,
D.
, and
Jin
,
H.
,
2021
, “
Surface Topography Prediction in Peripheral Milling of Thin-Walled Parts Considering Cutting Vibration and Material Removal Effect
,”
Int. J. Mech. Sci.
,
211
, p.
106797
.
10.
Lizzul
,
L.
,
Sorgato
,
M.
,
Bertolini
,
R.
,
Ghiotti
,
A.
, and
Bruschi
,
S.
,
2020
, “
Influence of Additive Manufacturing-Induced Anisotropy on Tool Wear in End Milling of Ti6Al4V
,”
Tribol. Int.
,
146
, p.
106200
.
11.
Zhang
,
L. C.
,
Attar
,
H.
,
Calin
,
M.
, and
Eckert
,
J.
,
2016
, “
Review on Manufacture by Selective Laser Melting and Properties of Titanium Based Materials for Biomedical Applications
,”
Mater. Technol.
,
31
(
2
), pp.
66
76
.
12.
Sneddon
,
S.
,
Xu
,
Y.
,
Dixon
,
M.
,
Rugg
,
D.
,
Li
,
P.
, and
Mulvihill
,
D. M.
,
2021
, “
Sensitivity of Material Failure to Surface Roughness: A Study on Titanium Alloys Ti64 and Ti407
,”
Mater. Des.
,
200
, p.
109438
.
13.
Marazani
,
T.
,
Madyira
,
D. M.
, and
Akinlabi
,
E. T.
,
2019
, “
Microhardness Profiling of Ti–6Al–4V Components Repaired Through Multiple Laser Additive Re-Melt Technique
,”
Procedia Manuf.
,
35
, pp.
897
902
.
14.
Muhammad
,
M.
,
Pegues
,
J. W.
,
Shamsaei
,
N.
, and
Haghshenas
,
M.
,
2019
, “
Effect of Heat Treatments on Microstructure/Small-Scale Properties of Additive Manufactured Ti–6Al–4V
,”
Int. J. Adv. Manuf. Technol.
,
103
(
9–12
), pp.
4161
4172
.
15.
Kumar
,
S.
, and
Kruth
,
J. P.
,
2008
, “
Wear Performance of SLS/SLM Materials
,”
Adv. Eng. Mater.
,
10
(
8
), pp.
750
753
.
16.
Marquer
,
M.
,
Laheurte
,
P.
,
Faure
,
L.
, and
Philippon
,
S.
,
2020
, “
Influence of 3D-Printing on the Behaviour of Ti6Al4V in High-Speed Friction
,”
Tribol. Int.
,
152
, p.
106557
.
17.
Bartolomeu
,
F.
,
Buciumeanu
,
M.
,
Pinto
,
E.
,
Alves
,
N.
,
Silva
,
F. S.
,
Carvalho
,
O.
, and
Miranda
,
G.
,
2017
, “
Wear Behavior of Ti6Al4V Biomedical Alloys Processed by Selective Laser Melting, Hot Pressing and Conventional Casting
,”
Trans. Nonferrous Met. Soc. China
,
27
(
4
), pp.
829
838
.
18.
Zhu
,
Y.
,
Chen
,
X.
,
Zou
,
J.
, and
Yang
,
H.
,
2016
, “
Sliding Wear of Selective Laser Melting Processed Ti6Al4V Under Boundary Lubrication Conditions
,”
Wear
,
368–369
, pp.
485
495
.
19.
Sharma
,
S.
,
Anitha
,
D.
,
Chaturvedi
,
V.
,
Vimal
,
J.
,
Jayaswal
,
P.
,
Saxena
,
K. K.
,
Aherwar
,
A.
,
Pathak
,
V. K.
, and
Abdullaev
,
S. S.
,
2023
, “
MIG Welding Process Parameter Optimisation of AISI 1026 Steel Using Taguchi-TOPSIS Method
,”
Int. J. Interact. Des. Manuf.
,
18
(
3
), pp.
1345
1357
.
20.
Marichamy
,
M.
,
Chockalingam
,
K.
, and
Arunachalam
,
N.
,
2025
, “
Hole Quality Geometrical Measurement and Surface Roughness for α-Phase Titanium Alloy (α-Ti–6Al–4V) Materials by Using L-PBF (Laser Powder Bed Fusion) Orthopedic Implant Application
,”
Measurement
,
240
, p.
115531
.
21.
Ju
,
J.
,
Zhou
,
Y.
,
Wang
,
K.
,
Liu
,
Y.
,
Li
,
J.
,
Kang
,
M.
, and
Wang
,
J.
,
2020
, “
Tribological Investigation of Additive Manufacturing Medical Ti6Al4V Alloys Against Al2O3 Ceramic Balls in Artificial Saliva
,”
J. Mech. Behav. Biomed. Mater.
,
104
, p.
103602
.
22.
Lancea
,
C.
,
Chicos
,
L.-A.
,
Zaharia
,
S. M.
, and
Pop
,
M. A.
,
2017
, “
Microstructure and Micro-hardness Analyses of Titanium Alloy Ti–6Al–4V Parts Manufactured by Selective Laser Melting
,”
MATEC Web Conf.
,
94
, p.
03009
.
23.
Gillen
,
B.
,
Snowberg
,
E.
, and
Yariv
,
L.
,
2015
,
Experimenting With Measurement Error: Techniques With Applications to the Caltech Cohort Study
,
NBER Publications
,
Cambridge, MA
.
24.
Mokkink
,
L. B.
,
Boers
,
M.
,
van der Vleuten
,
C. P. M.
,
Bouter
,
L. M.
,
Alonso
,
J.
,
Patrick
,
D. L.
,
de Vet
,
H. C. W.
, and
Terwee
,
C. B.
,
2020
, “
COSMIN Risk of Bias Tool to Assess the Quality of Studies on Reliability or Measurement Error of Outcome Measurement Instruments: A Delphi Study
,”
BMC Med. Res. Methodol.
,
20
(
1
), p.
293
.
25.
Dutta Majumdar
,
J.
, and
Manna
,
I.
,
2015
, “Laser Surface Engineering of Titanium and Its Alloys for Improved Wear, Corrosion and High-Temperature Oxidation Resistance,”
Laser Surface Engineering
,
J.
Lawrence
and
D. G.
Waugh
, eds.,
Elsevier
,
New York
, pp.
483
521
.
26.
Ter Haar
,
G. M.
, and
Becker
,
T. H.
,
2022
, “
Laser Powder Bed Fusion Produced Ti–6Al–4V: Influence of High-Energy Process Parameters on In-Situ Martensite Decomposition and Prior Beta Grain Texture
,”
J. Alloys Compd.
,
918
, p.
165497
.
You do not currently have access to this content.