Abstract

INCONEL® alloys are Ni-based superalloys with superior mechanical properties for extremely high-temperature (T) applications. These alloys present significant challenges: they are difficult-to-cut materials due to the low thermal conductivity (k), severe work hardening, and elevated surface hardness. They are widely used in applications that require good dimensional stability; however, built-up edge (BUE) followed by premature tool wear (TW) are the most common problems when applying conventional machining (CM) and hybrid machining processes, i.e., additive manufacturing (AM) followed by milling, resulting in a meagre final product finishing. Regarding cooling/lubricating environments, miscellanea of methods can be effectively applied to INCONEL® alloys, depending on their advantages and disadvantages. It is imperative to refine the machining parameters to enhance the performance outcomes of the process, particularly concerning the quality and cost-effectiveness of the product. This current review intends to offer a systematic summary and analysis of the progress taken within the field of INCONEL® CM and the various cooling/lubricating methods over the past decade, filling a gap found in the literature in this field of knowledge. A systematic literature review (SLR) approach was employed in this study, aiming to identify pertinent papers within the cooling and lubricating strategies for INCONEL® alloys machining. The most recent solutions found in the industry and the prospects from researchers will be presented, providing significant insights for academic researchers and industry professionals. It was found that selecting cooling methods for INCONEL® machining requires careful consideration of various factors. Each lubrication environment utilized in traditional INCONEL® machining methods offer unique advantages and challenges regarding the different outcomes: TW, tool life (TL), and/or surface quality assessment; nevertheless, cryogenic cooling by CO2(l) and N2(l) highlights as the better cooling environment to improve the machined surface quality.

References

1.
Dai
,
H.
,
Shi
,
S.
,
Yang
,
L.
,
Hu
,
J.
,
Liu
,
C.
,
Guo
,
C.
, and
Chen
,
X.
,
2020
, “
Effects of Elemental Composition and Microstructure Inhomogeneity on the Corrosion Behavior of Nickel-Based Alloys in Hydrofluoric Acid Solution
,”
Corros. Sci.
,
176
, p.
108917
.
2.
Kassner
,
M. E.
,
2015
, “Chapter 11—γ/γ′ Nickel-Based Superalloys,”
Fundamentals of Creep in Metals and Alloys
, 3rd ed,
M. E.
Kassner
, ed.,
Butterworth-Heinemann
,
Boston, MA
, pp.
261
273
.
3.
Ghosh
,
R. N.
,
2013
, “
Creep Life Predictions of Engineering Components: Problems & Prospects
,”
Procedia Eng.
,
55
, pp.
599
606
.
4.
Pedroso
,
A. F. V.
,
Sousa
,
V. F. C.
,
Sebbe
,
N. P. V.
,
Silva
,
F. J. G.
,
Campilho
,
R. D. S. G.
,
Sales-Contini
,
R. C. M.
, and
Jesus
,
A. M. P.
,
2023
, “
A Comprehensive Review on the Conventional and Non-Conventional Machining and Tool-Wear Mechanisms of INCONEL®
,”
Metals
,
13
(
3
), p.
585
.
5.
Pedroso
,
A. F. V.
,
Sebbe
,
N. P. V.
,
Silva
,
F. J. G.
,
Campilho
,
R. D. S. G.
,
Sales-Contini
,
R. C. M.
,
Martinho
,
R. P.
, and
Casais
,
R. B.
,
2024
, “
An In-Depth Exploration of Unconventional Machining Techniques for INCONEL® Alloys
,”
Materials
,
17
(
5
), p.
1197
.
6.
Pedroso
,
A. F. V.
,
Sousa
,
V. F. C.
,
Sebbe
,
N. P. V.
,
Silva
,
F. J. G.
,
Campilho
,
R. D. S. G.
,
Sales-Contini
,
R. C. M.
, and
Nogueira
,
F. R.
,
2024
, “A Review of INCONEL® Alloy's Non-Conventional Machining Processes,”
Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems
,
F. J. G.
Silva
,
A. B.
Pereira
, and
R. D. S. G.
Campilho
, eds.,
Springer Nature
,
Switzerland, Cham
, pp.
773
783
.
7.
Deng
,
D.
,
2018
, “
Additively Manufactured Inconel 718: Microstructures and Mechanical Properties
,”
Licentiate thesis, comprehensive summary
,
Linköping University Electronic Press
,
Linköping
.
8.
Ghiban
,
B.
,
Elefterie
,
C. F.
,
Guragata
,
C.
, and
Bran
,
D.
,
2018
, “
Requirements of Inconel 718 Alloy for Aeronautical Applications
,”
AIP Conf. Proc.
,
1932
(
1
), p.
030016
.
9.
Qadri
,
S. I. A.
,
Harmain
,
G. A.
, and
Wani
,
M. F.
,
2020
, “
Influence of Tool Tip Temperature on Crater Wear of Ceramic Inserts During Turning Process of Inconel-718 at Varying Hardness
,”
Tribol. Ind.
,
42
(
2
), pp.
310
326
.
10.
Nomoto
,
H.
,
2022
, “13—Development in Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Steam Turbines,”
Advances in Steam Turbines for Modern Power Plants
, 2nd ed.,
T.
Tanuma
, ed.,
Woodhead Publishing
,
Sawston, UK
, pp.
309
327
.
11.
Mahesh
,
K.
,
Philip
,
J. T.
,
Joshi
,
S. N.
, and
Kuriachen
,
B.
,
2021
, “
Machinability of Inconel 718: A Critical Review on the Impact of Cutting Temperatures
,”
Mater. Manuf. Processes
,
36
(
7
), pp.
753
791
.
12.
Yin
,
Q.
,
Liu
,
Z.
,
Wang
,
B.
,
Song
,
Q.
, and
Cai
,
Y.
,
2020
, “
Recent Progress of Machinability and Surface Integrity for Mechanical Machining Inconel 718: A Review
,”
Int. J. Adv. Manuf. Technol.
,
109
(
1
), pp.
215
245
.
13.
Weber
,
J. H.
, and
Banerjee
,
M. K.
,
2019
, “Nickel and Nickel Alloys: An Overview,”
Reference Module in Materials Science and Materials Engineering
,
Elsevier
,
New York
.
14.
Liu
,
L.
,
Zhang
,
J.
, and
Ai
,
C.
,
2022
, “Nickel-Based Superalloys,”
Encyclopedia of Materials: Metals and Alloys
,
F. G.
Caballero
, ed.,
Elsevier
,
Oxford
, pp.
294
304
.
15.
Ashby
,
M. F.
,
2016
,
Materials Selection in Mechanical Design
,
Elsevier Science
,
Amsterdão, Paises Baixos
.
16.
Kassner
,
M. E.
,
2015
, “Chapter 10—Creep Fracture,”
Fundamentals of Creep in Metals and Alloys
, 3rd ed.,
M. E.
Kassner
, ed.,
Butterworth-Heinemann
,
Boston
, pp.
233
260
.
17.
Pedroso
,
A. F. V.
,
Sebbe
,
N. P. V.
,
Costa
,
R. D. F. S.
,
Barbosa
,
M. L. S.
,
Sales-Contini
,
R. C. M.
,
Silva
,
F. J. G.
,
Campilho
,
R. D. S. G.
, and
de Jesus
,
A. M. P.
,
2024
, “
INCONEL® Alloy Machining and Tool Wear Finite Element Analysis Assessment: An Extended Review
,”
J. Manuf. Mater. Process.
,
8
(
1
), p.
37
.
18.
Thornton
,
E.-L.
,
Zannoun
,
H.
,
Vomero
,
C.
,
Caudill
,
D.
, and
Schoop
,
J.
,
2023
, “
A Review of Constitutive Models and Thermal Properties for Nickel-Based Superalloys Across Machining-Specific Regimes
,”
ASME J. Manuf. Sci. Eng.
,
145
(
8
).
19.
Ding
,
J.
,
Xue
,
S.
,
Shang
,
Z.
,
Li
,
J.
,
Zhang
,
Y.
,
Su
,
R.
,
Niu
,
T.
,
Wang
,
H.
, and
Zhang
,
X.
,
2021
, “
Characterization of Precipitation in Gradient Inconel 718 Superalloy
,”
Mater. Sci. Eng. A
,
804
, p.
140718
.
20.
Chen
,
Z.
, and
Song Soh
,
G.
,
2023
, “Chapter 6—Wire Arc Additive Manufacturing: Systems, Microstructure, Defects, Quality Control, and Modelling,”
Additive Manufacturing: Materials, Functionalities and Applications
,
K.
Zhou
, ed.,
Springer International Publishing
,
Cham
, pp.
205
243
.
21.
Campbell
,
F. C.
,
2006
, “Chapter 6—Superalloys,”
Manufacturing Technology for Aerospace Structural Materials
,
F. C.
Campbell
, ed.,
Elsevier Science
,
Oxford
, pp.
211
272
.
22.
Bi
,
Z.-N.
,
Dong
,
J.-X.
,
Zhang
,
M.-C.
,
Zheng
,
L.
, and
Xie
,
X.-S.
,
2010
, “
Mechanism of α-Cr Precipitation and Crystallographic Relationships Between α-Cr and δ Phases in Inconel 718 Alloy After Long-Time Thermal Exposure
,”
Int. J. Miner. Metall. Mater.
,
17
(
3
), pp.
312
317
.
23.
Murty
,
B. S.
,
Yeh
,
J. W.
,
Ranganathan
,
S.
, and
Bhattacharjee
,
P. P.
,
2019
, “8—Special Subgroups of High-Entropy Alloys,”
High-Entropy Alloys (Second Edition)
,
B. S.
Murty
,
J. W.
Yeh
,
S.
Ranganathan
, and
P. P.
Bhattacharjee
, eds.,
Elsevier
,
New York
, pp.
145
163
.
24.
Seow
,
C. E.
,
Coules
,
H. E.
,
Wu
,
G.
,
Khan
,
R. H. U.
,
Xu
,
X.
, and
Williams
,
S.
,
2019
, “
Wire + Arc Additively Manufactured Inconel 718: Effect of Post-Deposition Heat Treatments on Microstructure and Tensile Properties
,”
Mater. Des.
,
183
, p.
108157
.
25.
Dai
,
T.
,
Wheeling
,
R. A.
,
Hartman-Vaeth
,
K.
, and
Lippold
,
J. C.
,
2019
, “
Precipitation Behavior and Hardness Response of Alloy 625 Weld Overlay Under Different Aging Conditions
,”
Weld. World
,
63
(
4
), pp.
1087
1100
.
26.
Liu
,
X.
,
Fan
,
J.
,
Zhang
,
P.
,
Cao
,
K.
,
Wang
,
Z.
,
Chen
,
F.
,
Liu
,
D.
,
Tang
,
B.
,
Kou
,
H.
, and
Li
,
J.
,
2023
, “
Influence of Heat Treatment on Inconel 625 Superalloy Sheet: Carbides, γ'’, δ Phase Precipitation and Tensile Deformation Behavior
,”
J. Alloys Compd.
,
930
, p.
167522
.
27.
Singh
,
J. B.
,
2022
, “Chapter 3—Physical Metallurgy of Alloy 625,”
Alloy 625: Microstructure, Properties and Performance
,
J. B.
Singh
, ed.,
Springer Nature Singapore
,
Singapore
, pp.
67
110
.
28.
Waghmode
,
S. P.
, and
Dabade
,
U. A.
,
2019
, “
Optimization of Process Parameters During Turning of Inconel 625
,”
Mater. Today: Proc.
,
19
, pp.
823
826
.
29.
Singh
,
J. B.
,
2022
, “Chapter 7—Corrosion Behavior of Alloy 625,”
Alloy 625: Microstructure, Properties and Performance
,
J. B.
Singh
, ed.,
Springer Nature Singapore
,
Singapore
, pp.
241
291
.
30.
Kosaraju
,
S.
,
Vijay Kumar
,
M.
, and
Sateesh
,
N.
,
2018
, “
Optimization of Machining Parameter in Turning Inconel 625
,”
Mater. Today: Proc.
,
5
(
2, Part 1
), pp.
5343
5348
.
31.
Singh
,
J. B.
,
2022
, “Chapter 1—Introduction,”
Alloy 625: Microstructure, Properties and Performance
,
J. B.
Singh
, ed.,
Springer Nature Singapore
,
Singapore
, pp.
1
27
.
32.
International, A.
,
2016
, “
ASTM B 637—16. Standard Specification for Precipitation-Hardening and Cold Worked Nickel Alloy Bars, Forgings, and Forging Stock for Moderate or High Temperature Service
,” American Society for Testing and Materials International, Pensilvania, U.S.A., p.
7
.
33.
Evans
,
R.
,
2012
, “2—Selection and Testing of Metalworking Fluids,”
Metalworking Fluids (MWFs) for Cutting and Grinding
,
V. P.
Astakhov
, and
S.
Joksch
, eds.,
Woodhead Publishing
,
Basel, Switzerland
, pp.
23
78
.
34.
Dai
,
X.
,
Zhuang
,
K.
,
Pu
,
D.
,
Zhang
,
W.
, and
Ding
,
H.
,
2020
, “
An Investigation of the Work Hardening Behavior in Interrupted Cutting Inconel 718 Under Cryogenic Conditions
,”
Materials
,
13
(
9
), p.
2202
.
35.
Anburaj
,
R.
, and
Pradeep Kumar
,
M.
,
2021
, “
Experimental Studies on Cryogenic CO2 Face Milling of Inconel 625 Superalloy
,”
Mater. Manuf. Processes
,
36
(
7
), pp.
814
826
.
36.
Song
,
X.
,
He
,
W.
, and
Ihara
,
T.
,
2023
, “
A Novel Approach for Dry Cutting Inconel 718 in a More Sustainable and Low-Cost Way by Actively and Purposely Utilizing the Built-Up Layer
,”
Micromachines
,
14
(
9
), p.
1787
.
37.
Guimaraes
,
M. C. R.
,
Fogagnolo
,
J. B.
,
Paiva
,
J. M.
,
Veldhuis
,
S. C.
, and
Diniz
,
A. E.
,
2022
, “
Evaluation of Milling Parameters on the Surface Integrity of Welded Inconel 625
,”
J. Mater. Res. Technol.
,
20
, pp.
2611
2628
.
38.
Nouari
,
M.
,
Haddag
,
B.
,
Moufki
,
A.
, and
Atlati
,
S.
,
2018
, “Chapter 2—Investigation on the Built-up Edge Process When Dry Machining Aeronautical Aluminum Alloys,”
Machining of Light Alloys: Aluminum, Titanium, and Magnesium
,
D.
Carou
, and
J.
Davim
, eds.,
Taylor and Francis
,
Amsterdam, The Netherlands
.
39.
Montazeri
,
S.
,
Aramesh
,
M.
, and
Veldhuis
,
S. C.
,
2020
, “
Novel Application of Ultra-Soft and Lubricious Materials for Cutting Tool Protection and Enhancement of Machining Induced Surface Integrity of Inconel 718
,”
J. Manuf. Processes
,
57
, pp.
431
443
.
40.
Ucun
,
İ
,
Aslantaş
,
K.
, and
Bedir
,
F.
,
2015
, “
The Effect of Minimum Quantity Lubrication and Cryogenic Pre-Cooling on Cutting Performance in the Micro Milling of Inconel 718
,”
Proc. Inst. Mech. Eng. B
,
229
(
12
), pp.
2134
2143
.
41.
Li
,
X.
,
Liu
,
X.
,
Yue
,
C.
,
Liang
,
S. Y.
, and
Wang
,
L.
,
2022
, “
Systematic Review on Tool Breakage Monitoring Techniques in Machining Operations
,”
Int. J. Mach. Tools Manuf.
,
176
, p.
103882
.
42.
Sousa
,
V. F. C.
, and
Silva
,
F. J. G.
,
2020
, “
Recent Advances on Coated Milling Tool Technology—A Comprehensive Review
,”
Coatings
,
10
(
3
), p.
235
.
43.
Silva
,
F. J. G.
,
Martinho
,
R. P.
, and
Baptista
,
A. P. M.
,
2014
, “
Characterization of Laboratory and Industrial CrN/CrCN/Diamond-Like Carbon Coatings
,”
Thin Solid Films
,
550
, pp.
278
284
.
44.
De Bartolomeis
,
A.
,
Newman
,
S. T.
,
Biermann
,
D.
, and
Shokrani
,
A.
,
2021
, “
State-of-the-Art Cooling and Lubrication for Machining Inconel 718
,”
ASME J. Manuf. Sci. Eng.
,
143
(
5
), p.
050801
.
45.
Bartolomeis
,
A. D.
,
Newman
,
S. T.
, and
Shokrani
,
A.
,
2020
, “
Initial Investigation on Surface Integrity When Machining Inconel 718 With Conventional and Electrostatic Lubrication
,”
Procedia CIRP
,
87
, pp.
65
70
.
46.
Wang
,
R.
,
Yang
,
D.
,
Wang
,
W.
,
Wei
,
F.
,
Lu
,
Y.
, and
Li
,
Y.
,
2022
, “
Tool Wear in Nickel-Based Superalloy Machining: An Overview
,”
Processes
,
10
(
11
), p.
2380
.
47.
Singh
,
A.
,
Ghosh
,
S.
, and
Aravindan
,
S.
,
2022
, “
State of Art for Sustainable Machining of Nickel-Based Alloys Using Coated and Uncoated Tools and Machining of High Strength Materials Using Surface Modified Cutting Tools
,”
Tribol. Int.
,
170
, p.
107517
.
48.
Pape
,
F.
,
Poll
,
G.
,
Ellersiek
,
L.
,
Denkena
,
B.
, and
Liu
,
H.
,
2023
, “
Tribological Effects of Metalworking Fluids in Cutting Processes
,”
Lubricants
,
11
(
5
), p.
224
.
49.
Yin
,
Q.
,
Liu
,
Z.
, and
Wang
,
B.
,
2021
, “
Machinability Improvement of Inconel 718 Through Mechanochemical and Heat Transfer Effects of Coated Surface-Active Thermal Conductive Mediums
,”
J. Alloys Compd.
,
876
, p.
160186
.
50.
Liang
,
C.
,
Gong
,
Y.
,
Zhou
,
L.
,
Qi
,
Y.
,
Zhang
,
H.
, and
Zhao
,
J.
,
2023
, “
Tool Wear Mechanism and Grinding Performance for Different Cooling-Lubrication Modes in Grinding of Nickel-Based Superalloys
,”
Materials
,
16
(
9
), p.
3545
.
51.
Teixeira
,
A.
,
Sousa
,
V. F. C.
,
Silva
,
T. E. F.
,
Figueiredo
,
D.
,
Marques
,
F.
,
Fernandes
,
C.
,
Jesus
,
A. M. P.
, and
Reis
,
A.
,
2024
, “
CVD-Coated Tungsten Carbide Solutions for Turning Inconel 718
,”
Procedia Struct. Integrity
,
53
, pp.
352
366
.
52.
Evans
,
R. D.
,
Hooijman
,
J. J.
, and
van der Veer
,
J. M.
,
2020
, “Chapter 4—Advances in Cooling and Lubrication for High Speed Machining,”
High Speed Machining
,
K.
Gupta
, and
J.
Paulo Davim
, eds.,
Academic Press
,
MA
, pp.
97
125
.
53.
Astakhov
,
V. P.
, and
Godlevskiy
,
V.
,
2012
, “3—Delivery of Metalworking Fluids in the Machining Zone,”
Metalworking Fluids (MWFs) for Cutting and Grinding
,
V. P.
Astakhov
, and
S.
Joksch
, eds.,
Woodhead Publishing
,
Sawston, UK
, pp.
79
134
.
54.
Sankaranarayanan
,
R.
,
Rajesh Jesudoss Hynes
,
N.
,
Senthil Kumar
,
J.
, and
Krolczyk
,
G. M.
,
2021
, “
A Comprehensive Review on Research Developments of Vegetable-Oil Based Cutting Fluids for Sustainable Machining Challenges
,”
J. Manuf. Processes
,
67
, pp.
286
313
.
55.
Park
,
D.
,
Stewart
,
P. A.
, and
Coble
,
J. B.
,
2009
, “
A Comprehensive Review of the Literature on Exposure to Metalworking Fluids
,”
J. Occup. Environ. Hyg.
,
6
(
9
), pp.
530
541
.
56.
Wu
,
X.
,
Yue
,
B.
,
Su
,
Y.
,
Wang
,
Q.
,
Huang
,
Q.
,
Wang
,
Q.
, and
Cai
,
H.
,
2017
, “
Pollution Characteristics of Polycyclic Aromatic Hydrocarbons in Common Used Mineral Oils and Their Transformation During Oil Regeneration
,”
J. Environ. Sci.
,
56
, pp.
247
253
.
57.
Shokoohi
,
Y.
,
Khosrojerdi
,
E.
, and
Rassolian Shiadhi
,
B. H.
,
2015
, “
Machining and Ecological Effects of a New Developed Cutting Fluid in Combination With Different Cooling Techniques on Turning Operation
,”
J. Cleaner Prod.
,
94
, pp.
330
339
.
58.
Li
,
K.
,
Aghazadeh
,
F.
,
Hatipkarasulu
,
S.
, and
Ray
,
T. G.
,
2003
, “
Health Risks From Exposure to Metal-Working Fluids in Machining and Grinding Operations
,”
Int. J. Occup. Saf. Ergon.
,
9
(
1
), pp.
75
95
.
59.
Abdalla
,
H. S.
,
Baines
,
W.
,
McIntyre
,
G.
, and
Slade
,
C.
,
2007
, “
Development of Novel Sustainable Neat-oil Metal Working Fluids for Stainless Steel and Titanium Alloy Machining. Part 1. Formulation Development
,”
Int. J. Adv. Manuf. Technol.
,
34
(
1
), pp.
21
33
.
60.
Shokrani
,
A.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2012
, “
Environmentally Conscious Machining of Difficult-to-Machine Materials With Regard to Cutting Fluids
,”
Int. J. Mach. Tools Manuf.
,
57
, pp.
83
101
.
61.
Kalpakjian
,
S.
, and
Schmid
,
S.
,
2013
,
Manufacturing Engineering & Technology
,
Pearson Education
,
London, UK
.
62.
Proud
,
L.
,
Tapoglou
,
N.
, and
Slatter
,
T.
,
2022
, “
A Review of CO2 Coolants for Sustainable Machining
,”
Metals
,
12
(
2
), p.
283
.
63.
Sen
,
B.
, and
Bhowmik
,
A.
,
2024
, “
Application of Minimum Quantity GnP Nanofluid and Cryogenic LN2 in the Machining of Hastelloy C276
,”
Tribol. Int.
,
194
, p.
109509
.
64.
Neto
,
O. M. P.
,
Calleja-Ochoa
,
A.
,
Ayesta
,
I.
,
Rodríguez
,
A.
,
González-Barrio
,
H.
, and
de Lacalle
,
L. N. L.
,
2024
, “
A Cleaner Milling Process Replacing Emulsion Coolant by Cryogenics CO2
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
11
(
1
), pp.
21
32
.
65.
Kulkarni
,
P.
, and
Chinchanikar
,
S.
,
2024
, “Machinability of Inconel 718 Using Unitary and Hybrid Nanofluids Under Minimum Quantity Lubrication,”
Advances in Materials and Processing Technologies
,
S.
Hashmi
, ed.,
Abingdon, UK
, pp.
1
29
.
66.
Korkmaz
,
M. E.
,
Gupta
,
M. K.
,
Ross
,
N. S.
, and
Sivalingam
,
V.
,
2023
, “
Implementation of Green Cooling/Lubrication Strategies in Metal Cutting Industries: A State of the Art Towards Sustainable Future and Challenges
,”
Sustainable Mater. Technol.
,
36
, p.
e00641
.
67.
Okafor
,
A. C.
,
2020
, “Chapter 5—Cooling and Machining Strategies for High Speed Milling of Titanium and Nickel Super Alloys,”
High Speed Machining
,
K.
Gupta
, and
J.
Paulo Davim
, eds.,
Academic Press
,
MA
, pp.
127
161
.
68.
De Bartolomeis
,
A.
,
Newman
,
S. T.
,
Jawahir
,
I. S.
,
Biermann
,
D.
, and
Shokrani
,
A.
,
2021
, “
Future Research Directions in the Machining of Inconel 718
,”
J. Mater. Process. Technol.
,
297
, p.
117260
.
69.
Astakhov
,
V. P.
,
2012
, “5—High-Pressure Supply of Metalworking Fluids,”
Metalworking Fluids (MWFs) for Cutting and Grinding
,
V. P.
Astakhov
, and
S.
Joksch
, eds.,
Woodhead Publishing
,
Sawston, UK
, pp.
201
290
.
70.
Liao
,
Y.
,
Deschamps
,
F.
,
Loures
,
E. D. F. R.
, and
Ramos
,
L. F. P.
,
2017
, “
Past, Present and Future of Industry 4.0—A Systematic Literature Review and Research Agenda Proposal
,”
Int. J. Prod. Res.
,
55
(
12
), pp.
3609
3629
.
71.
Azarian
,
M.
,
Yu
,
H.
,
Shiferaw
,
A. T.
, and
Stevik
,
T. K.
,
2023
, “
Do We Perform Systematic Literature Review Right? A Scientific Mapping and Methodological Assessment
,”
Logistics
,
7
(
4
), p.
89
.
72.
Tóth
,
Á
,
Suta
,
A.
,
Pimentel
,
J.
, and
Argoti
,
A.
,
2023
, “
A Comprehensive, Semi-Automated Systematic Literature Review (SLR) Design: Application to P-Graph Research With a Focus on Sustainability
,”
J. Cleaner Prod.
,
415
, p.
137741
.
73.
Shokrani
,
A.
,
Arrazola
,
P. J.
,
Biermann
,
D.
,
Mativenga
,
P.
, and
Jawahir
,
I. S.
,
2024
, “
Sustainable Machining: Recent Technological Advances
,”
CIRP Ann.
,
73
(
2
), pp.
483
508
.
74.
Zhang
,
Y.
,
Li
,
L.
,
Cui
,
X.
,
An
,
Q.
,
Xu
,
P.
,
Wang
,
W.
,
Jia
,
D.
,
Liu
,
M.
,
Dambatta
,
Y. S.
, and
Li
,
C.
,
2024
, “
Lubricant Activity Enhanced Technologies for Sustainable Machining: Mechanisms and Processability
,”
Chin. J. Aeronaut.
75.
Saleem
,
M. Q.
, and
Mumtaz
,
S.
,
2020
, “
Face Milling of Inconel 625 via Wiper Inserts: Evaluation of Tool Life and Workpiece Surface Integrity
,”
J. Manuf. Processes
,
56
, pp.
322
336
.
76.
Ozaner
,
O. C.
,
Kapil
,
A.
,
Sato
,
Y.
,
Hayashi
,
Y.
,
Ikeda
,
K.
,
Suga
,
T.
,
Tsukamoto
,
M.
,
Karabulut
,
S.
,
Bilgin
,
M.
, and
Sharma
,
A.
,
2023
, “
Dry and Minimum Quantity Lubrication Machining of Additively Manufactured IN718 Produced via Laser Metal Deposition
,”
Lubricants
,
11
(
12
), p.
523
.
77.
Qi
,
Y.
,
Zhang
,
J.
,
Yi
,
M.
,
Xu
,
C.
,
Zhang
,
P.
,
Chen
,
Z.
, and
Li
,
G.
,
2024
, “
Study on the Grain Refinement Mechanism of the Machined Surface of Inconel 718
,”
J. Mater. Res. Technol.
,
29
, pp.
1729
1743
.
78.
Meng
,
G.
,
Gong
,
Y.
,
Zhang
,
J.
,
Ren
,
Q.
, and
Zhao
,
J.
,
2024
, “
Microstructure Effect on the Machinability Behavior of Additive and Conventionally Manufactured Inconel 718 Alloys
,”
J. Mater. Process. Technol.
,
324
, p.
118228
.
79.
Jadam
,
T.
,
Panda
,
D.
,
Chatterjee
,
S.
,
Datta
,
S.
,
Sahoo
,
S. K.
, and
Mishra
,
S. C.
,
2021
, “Chapter Six—Performance of Microwave-Irradiated WC-Co Insert During dry Machining of Inconel 718 Superalloys,”
Sustainable Manufacturing and Design
,
K.
Kumar
,
D.
Zindani
, and
J. P.
Davim
, eds.,
Woodhead Publishing
,
Sawston, UK
, pp.
103
132
.
80.
Danish
,
M.
,
Gupta
,
M. K.
,
Rubaiee
,
S.
,
Ahmed
,
A.
, and
Korkmaz
,
M. E.
,
2021
, “
Influence of Hybrid Cryo-MQL Lubri-Cooling Strategy on the Machining and Tribological Characteristics of Inconel 718
,”
Tribol. Int.
,
163
, p.
107178
.
81.
Airao
,
J.
,
Nirala
,
C. K.
, and
Khanna
,
N.
,
2022
, “
Novel use of Ultrasonic-Assisted Turning in Conjunction With Cryogenic and Lubrication Techniques to Analyze the Machinability of Inconel 718
,”
J. Manuf. Processes
,
81
, pp.
962
975
.
82.
Danish
,
M.
,
Gupta
,
M. K.
,
Rubaiee
,
S.
,
Ahmed
,
A.
,
Sarıkaya
,
M.
, and
Krolczyk
,
G. M.
,
2022
, “
Environmental, Technological and Economical Aspects of Cryogenic Assisted Hard Machining Operation of Inconel 718: A Step Towards Green Manufacturing
,”
J. Cleaner Prod.
,
337
, p.
130483
.
83.
Pandey
,
K.
, and
Datta
,
S.
,
2022
, “
Performance of Si-Doped TiAlxN Supernitride Coated Carbide Tool During dry Machining of Inconel 718 Superalloy
,”
J. Manuf. Processes
,
84
, pp.
1258
1273
.
84.
Rakesh
,
P. R.
, and
Chakradhar
,
D.
,
2023
, “
Machining Performance Comparison of Inconel 625 Superalloy Under Sustainable Machining Environments
,”
J. Manuf. Processes
,
85
, pp.
742
755
.
85.
Khanna
,
N.
,
Agrawal
,
C.
,
Gupta
,
M. K.
, and
Song
,
Q.
,
2020
, “
Tool Wear and Hole Quality Evaluation in Cryogenic Drilling of Inconel 718 Superalloy
,”
Tribol. Int.
,
143
, p.
106084
.
86.
Pervaiz
,
S.
,
Kannan
,
S.
, and
Subramaniam
,
A.
,
2020
, “
Optimization of Cutting Process Parameters in Inclined Drilling of Inconel 718 Using Finite Element Method and Taguchi Analysis
,”
Materials
,
13
(
18
), p.
3995
.
87.
Kishore
,
K.
,
Chauhan
,
S. R.
, and
Sinha
,
M. K.
,
2023
, “
Application of Machine Learning Techniques in Environmentally Benign Surface Grinding of Inconel 625
,”
Tribol. Int.
,
188
, p.
108812
.
88.
Baptista
,
A.
,
Silva
,
F. J. G.
,
Porteiro
,
J.
,
Míguez
,
J. L.
,
Pinto
,
G.
, and
Fernandes
,
L.
,
2018
, “
On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications
,”
Procedia Manuf.
,
17
, pp.
746
757
.
89.
Martinho
,
R. P.
,
Silva
,
F. J. G.
,
Martins
,
C.
, and
Lopes
,
H.
,
2019
, “
Comparative Study of PVD and CVD Cutting Tools Performance in Milling of Duplex Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5
), pp.
2423
2439
.
90.
Sebbe
,
N. P. V.
,
Fernandes
,
F.
,
Sousa
,
V. F. C.
, and
Silva
,
F. J. G.
,
2022
, “
Hybrid Manufacturing Processes Used in the Production of Complex Parts: A Comprehensive Review
,”
Metals
,
12
(
11
), pp.
1874
1894
.
91.
Russo
,
R.
,
Girot Mata
,
F. A.
,
Forest
,
S.
, and
Jacquin
,
D.
,
2020
, “
A Review on Strain Gradient Plasticity Approaches in Simulation of Manufacturing Processes
,”
J. Manuf. Mater. Process.
,
4
(
3
), p.
87
.
92.
Dangwal
,
S.
,
Edalati
,
K.
,
Valiev
,
R. Z.
, and
Langdon
,
T. G.
,
2023
, “
Breaks in the Hall–Petch Relationship After Severe Plastic Deformation of Magnesium, Aluminum, Copper, and Iron
,”
Crystals
,
13
(
3
), p.
413
.
93.
Wan
,
X.
,
Wang
,
J.
,
Li
,
P.
,
Chen
,
J.
, and
Wang
,
X.
,
2023
, “
Investigation of the Evolution of Schmid Factors (SF) in 316 Stainless Steel During In Situ Plastic Deformation
,”
Crystals
,
13
(
10
), p.
1510
.
94.
Petrík
,
J.
,
Blaško
,
P.
,
Petryshynets
,
I.
,
Mihaliková
,
M.
,
Pribulová
,
A.
, and
Futáš
,
P.
,
2022
, “
The Influence of the Degree of Tension and Compression of Aluminum on the Indentation Size Effect (ISE)
,”
Metals
,
12
(
12
), p.
2063
.
95.
International Organization for Standardization
,
1993
, “
ISO 3685:1993(E). Tool-Life Testing with Single-Point Turning Tools
,” International Organization for Standardization, Geneva, Switzerland, p.
53
.
96.
Liu
,
H. C.
,
Pape
,
F.
,
Zhao
,
Y.
,
Ellersiek
,
L.
,
Denkena
,
B.
, and
Poll
,
G.
,
2022
, “
On the Elastohydrodynamic Film-Forming Properties of Metalworking Fluids and Oil-in-Water Emulsions
,”
Tribol. Lett.
,
71
(
1
), p.
10
.
97.
Fernández
,
D.
,
Sandá
,
A.
, and
Bengoetxea
,
I.
,
2019
, “
Cryogenic Milling: Study of the Effect of CO2 Cooling on Tool Wear When Machining Inconel 718, Grade EA1N Steel and Gamma TiAl
,”
Lubricants
,
7
(
1
), p.
10
.
98.
Agarwal
,
A.
,
Potthoff
,
N.
,
Shah
,
A. M.
,
Mears
,
L.
, and
Wiederkehr
,
P.
,
2022
, “
Analyzing the Evolution of Tool Wear Area in Trochoidal Milling of Inconel 718 Using Image Processing Methodology
,”
Manuf. Lett.
,
33
, pp.
373
379
.
99.
Shahl
,
A. M.
,
Agarwal
,
A.
, and
Mears
,
L.
,
2023
, “
Tool Wear Area Estimation Through in-Process Edge Force Coefficient in Trochoidal Milling of Inconel 718
,”
Manuf. Lett.
,
35
, pp.
391
398
.
100.
Sousa
,
V. F. C.
,
Fernandes
,
F.
,
Silva
,
F. J. G.
,
Costa
,
R. D. F. S.
,
Sebbe
,
N.
, and
Sales-Contini
,
R. C. M.
,
2023
, “
Wear Behavior Phenomena of TiN/TiAlN HiPIMS PVD-Coated Tools on Milling Inconel 718
,”
Metals
,
13
(
4
), p.
684
.
101.
Sebbe
,
N. P. V.
,
Fernandes
,
F.
,
Silva
,
F. J. G.
,
Sousa
,
V. F. C.
,
Sales-Contini
,
R. C. M.
,
Campilho
,
R. D. S. G.
, and
Pedroso
,
A. F. V.
,
2024
, “Wear Behavior Analysis of TiN/TiAlN Coated Tools in Milling of Inconel 718,”
Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems
,
F. J. G.
Silva
,
A. B.
Pereira
, and
R. D. S. G.
Campilho
, eds.,
Springer Nature
,
Switzerland, Cham
, pp.
784
795
.
102.
Silva
,
F. J. G.
,
Sebbe
,
N. P. V.
,
Costa
,
R. D. F. S.
,
Pedroso
,
A. F. V.
,
Sales-Contini
,
R. C. M.
,
Barbosa
,
M. L. S.
, and
Martinho
,
R. P.
,
2024
, “
Investigations on the Surface Integrity and Wear Mechanisms of TiAlYN-Coated Tools in Inconel 718 Milling Operations
,”
Materials
,
17
(
2
), p.
443
.
103.
Sebbe
,
N. P. V.
,
Fernandes
,
F.
,
Silva
,
F. J. G.
,
Pedroso
,
A. F. V.
,
Sales-Contini
,
R. C. M.
,
Barbosa
,
M. L. S.
,
Durão
,
L. M.
, and
Magalhães
,
L. L.
,
2024
, “
Wear Behavior of TiAlVN-Coated Tools in Milling Operations of INCONEL® 718
,”
Coatings
,
14
(
3
), p.
311
.
104.
Sebbe
,
N.
,
Albuquerque
,
J.
,
Sousa
,
V.
,
Fernandes
,
F.
,
Silva
,
F. J. G.
,
Sales-Contini
,
R. D. C.
,
Pedroso
,
A.
, and
Martinho
,
R. P.
,
2024
, “
Investigations on Tool Wear Behaviour of TiAlVN and TiAlN/TiAlVN Coated Tools in the Milling Inconel 718
,”
ASME J. Tribol.
,
146
(
12
), pp.
1
35
.
105.
Chaabani
,
S.
,
Arrazola
,
P. J.
,
Ayed
,
Y.
,
Madariaga
,
A.
,
Tidu
,
A.
, and
Germain
,
G.
,
2020
, “
Comparison Between Cryogenic Coolants Effect on Tool Wear and Surface Integrity in Finishing Turning of Inconel 718
,”
J. Mater. Process. Technol.
,
285
, p.
116780
.
106.
Szablewski
,
P.
,
2023
, “
Evaluation of the Topography and Load Capacity of Cylindrical Surfaces Shaped in the Process of Finish Turning of the Inconel 718 Alloy
,”
Measurement
,
223
, p.
113749
.
107.
Qin
,
X.
,
Liu
,
W.
,
Li
,
S.
,
Tong
,
W.
,
Ji
,
X.
,
Meng
,
F.
,
Liu
,
J.
, and
Zhao
,
E.
,
2019
, “
A Comparative Study Between Internal Spray Cooling and Conventional External Cooling in Drilling of Inconel 718
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9
), pp.
4581
4592
.
108.
Anwar
,
S.
,
Khan
,
N. A.
,
Khan
,
S. A.
, and
Raza
,
S. F.
,
2023
, “
One-Step High-Speed Finish Drilling of Inconel 718 Superalloy via Novel Inserts
,”
Processes
,
11
(
3
), p.
752
.
109.
Sousa
,
V. F. C.
,
Da Silva
,
F. J. G.
,
Pinto
,
G. F.
,
Baptista
,
A.
, and
Alexandre
,
R.
,
2021
, “
Characteristics and Wear Mechanisms of TiAlN-Based Coatings for Machining Applications: A Comprehensive Review
,”
Metals
,
11
(
2
), p.
260
.
110.
Jang
,
J.
, and
Kim
,
K.
,
2019
, “
Modeling of a Microscale Surface Using NURBS Technique
,”
Coatings
,
9
(
12
), p.
775
.
111.
Pimenov
,
D. Y.
,
Mia
,
M.
,
Gupta
,
M. K.
,
Machado
,
A. R.
,
Tomaz
,
ÍV
,
Sarikaya
,
M.
,
Wojciechowski
,
S.
,
Mikolajczyk
,
T.
, and
Kapłonek
,
W.
,
2021
, “
Improvement of Machinability of Ti and Its Alloys Using Cooling-Lubrication Techniques: A Review and Future Prospect
,”
J. Mater. Res. Technol.
,
11
, pp.
719
753
.
112.
Sørby
,
K.
, and
Vagnorius
,
Z.
,
2018
, “
High-Pressure Cooling in Turning of Inconel 625 With Ceramic Cutting Tools
,”
Procedia CIRP
,
77
, pp.
74
77
.
113.
Suárez
,
A.
,
López de Lacalle
,
L. N.
,
Polvorosa
,
R.
,
Veiga
,
F.
, and
Wretland
,
A.
,
2017
, “
Effects of High-Pressure Cooling on the Wear Patterns on Turning Inserts Used on Alloy IN718
,”
Mater. Manuf. Processes
,
32
(
6
), pp.
678
686
.
114.
Fang
,
Z.
, and
Obikawa
,
T.
,
2017
, “
Turning of Inconel 718 Using Inserts With Cooling Channels Under High Pressure jet Coolant Assistance
,”
J. Mater. Process. Technol.
,
247
, pp.
19
28
.
115.
Peng
,
Z.
,
Zhang
,
X.
,
Zhang
,
Y.
,
Liu
,
L.
,
Xu
,
G.
,
Wang
,
G.
, and
Zhao
,
M.
,
2023
, “
Wear Resistance Enhancement of Inconel 718 via High-Speed Ultrasonic Vibration Cutting and Associated Surface Integrity Evaluation Under High-Pressure Coolant Supply
,”
Wear
,
530–531
, p.
205027
.
116.
Kharka
,
V.
, and
Jain
,
N. K.
,
2021
, “Chapter 15—Achieving Sustainability in Machining of Cylindrical Gears,”
Sustainable Manufacturing
,
K.
Gupta
, and
K.
Salonitis
, eds.,
Elsevier
,
New York
, pp.
391
426
.
117.
Alonso
,
U.
,
Veiga
,
F.
,
Suárez
,
A.
, and
Gil Del Val
,
A.
,
2021
, “
Characterization of Inconel 718® Superalloy Fabricated by Wire Arc Additive Manufacturing: Effect on Mechanical Properties and Machinability
,”
J. Mater. Res. Technol.
,
14
, pp.
2665
2676
.
118.
Airao
,
J.
,
Khanna
,
N.
, and
Nirala
,
C. K.
,
2022
, “
Tool Wear Reduction in Machining Inconel 718 by Using Novel Sustainable Cryo-Lubrication Techniques
,”
Tribol. Int.
,
175
, p.
107813
.
119.
Makhesana
,
M. A.
,
Patel
,
K. M.
,
Krolczyk
,
G. M.
,
Danish
,
M.
,
Singla
,
A. K.
, and
Khanna
,
N.
,
2023
, “
Influence of MoS2 and Graphite-Reinforced Nanofluid-MQL on Surface Roughness, Tool Wear, Cutting Temperature and Microhardness in Machining of Inconel 625
,”
CIRP J. Manuf. Sci. Technol.
,
41
, pp.
225
238
.
120.
Tian
,
C.
,
Cai
,
H.
,
Xue
,
Y.
,
Pei
,
L.
, and
Yu
,
Y.
,
2023
, “
Effect of Argon Flow Rate on Tribological Properties of Rare Earth Ce Doped MoS2 Based Composite Coatings by Magnetron Sputtering
,”
Lubricants
,
11
(
10
), p.
432
.
121.
Pereira
,
O.
,
Rodríguez
,
A.
,
Calleja-Ochoa
,
A.
,
Celaya
,
A.
,
de Lacalle
,
L. N. L.
,
Fernández-Valdivielso
,
A.
, and
González
,
H.
,
2022
, “
Simulation of Cryo-Cooling to Improve Super Alloys Cutting Tools
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
9
(
1
), pp.
73
82
.
122.
Bayraktar
,
S.
,
2020
, “Chapter 8—Cryogenic Cooling-Based Sustainable Machining,”
High Speed Machining
,
K.
Gupta
, and
J.
Paulo Davim
, eds.,
Academic Press
,
MA
, pp.
223
241
.
123.
Şap
,
S.
,
Usca
,
ÜA
,
Uzun
,
M.
,
Kuntoğlu
,
M.
,
Salur
,
E.
, and
Pimenov
,
D. Y.
,
2022
, “
Investigation of the Effects of Cooling and Lubricating Strategies on Tribological Characteristics in Machining of Hybrid Composites
,”
Lubricants
,
10
(
4
), p.
63
.
124.
Rubaiee
,
S.
,
Danish
,
M.
,
Gupta
,
M. K.
,
Ahmed
,
A.
,
Yahya
,
S. M.
,
Yildirim
,
M. B.
,
Sarikaya
,
M.
, and
Korkmaz
,
M. E.
,
2022
, “
Key Initiatives to Improve the Machining Characteristics of Inconel-718 Alloy: Experimental Analysis and Optimization
,”
J. Mater. Res. Technol.
,
21
, pp.
2704
2720
.
125.
Amigo
,
F. J.
,
Urbikain
,
G.
,
Pereira
,
O.
,
Fernández-Lucio
,
P.
,
Fernández-Valdivielso
,
A.
, and
de Lacalle
,
L. N. L.
,
2020
, “
Combination of High Feed Turning with Cryogenic Cooling on Haynes 263 and Inconel 718 Superalloys
,”
J. Manuf. Processes
,
58
, pp.
208
222
.
126.
Eskandari
,
B.
,
Bhowmick
,
S.
, and
Alpas
,
A. T.
,
2022
, “
Turning of Inconel 718 Using Liquid Nitrogen: Multi-Objective Optimization of Cutting Parameters Using RSM
,”
Int. J. Adv. Manuf. Technol.
,
120
(
5
), pp.
3077
3101
.
127.
Khanna
,
N.
,
Airao
,
J.
,
Kshitij
,
G.
,
Nirala
,
C. K.
, and
Hegab
,
H.
,
2023
, “
Sustainability Analysis of new Hybrid Cooling/Lubrication Strategies During Machining Ti6Al4V and Inconel 718 Alloys
,”
Sustainable Mater. Technol.
,
36
, p.
e00606
.
128.
Qiu
,
W.
,
Pan
,
D.
,
Li
,
J.
,
Guo
,
P.
,
Qiao
,
Y.
, and
Wang
,
X.
,
2023
, “
Chip Formation Mechanism in Cryogenic Machining of High Temperature Alloy-Inconel 718 and Ti-47.5Al-2.5V-1.0Cr
,”
J. Manuf. Processes
,
97
, pp.
35
47
.
129.
Gong
,
L.
,
Su
,
Y.
,
Liu
,
Y.
,
Zhao
,
W.
,
Khan
,
A. M.
, and
Jamil
,
M.
,
2023
, “
Investigation on Machinability Characteristics of Inconel 718 Alloy in Cryogenic Machining Processes
,”
Lubricants
,
11
(
2
), p.
82
.
130.
Outeiro
,
J. C.
,
Lenoir
,
P.
, and
Bosselut
,
A.
,
2015
, “
Thermo-Mechanical Effects in Drilling Using Metal Working Fluids and Cryogenic Cooling and Their Impact in Tool Performance
,”
Prod. Eng.
,
9
(
4
), pp.
551
562
.
131.
Shah
,
P.
,
Khanna
,
N.
,
Arora
,
A.
, and
Srivastava
,
N.
,
2022
, “
Comparison of LN2 and LCO2 Based on Machining Performance Indicators for Drilling Inconel 718
,”
J. Manuf. Processes
,
81
, pp.
444
466
.
132.
International Organization for Standardization
,
1989
, “
ISO 8688-2:1989(E). Tool Life Testing in Milling—Part 2: End Milling
,”
International Organization for Standardization
,
Geneva, Switzerland
, p.
26
.
133.
Martinho
,
R. P.
,
Silva
,
F. J. G.
, and
Baptista
,
A. P. M.
,
2008
, “
Cutting Forces and Wear Analysis of Si3N4 Diamond Coated Tools in High Speed Machining
,”
Vacuum
,
82
(
12
), pp.
1415
1420
.
134.
Silva
,
F. J. G.
,
Martinho
,
R. P.
,
Martins
,
C.
,
Lopes
,
H.
, and
Gouveia
,
R. M.
,
2019
, “
Machining GX2CrNiMoN26-7-4 DSS Alloy: Wear Analysis of TiAlN and TiCN/Al2O3/TiN Coated Carbide Tools Behavior in Rough End Milling Operations
,”
Coatings
,
9
(
6
), p.
392
.
135.
Subhedar
,
D. G.
,
Patel
,
Y. S.
,
Ramani
,
B. M.
, and
Patange
,
G. S.
,
2021
, “
An Experimental Investigation on the Effect of Al2O3/ Cutting Oil Based Nano Coolant for Minimum Quantity Lubrication Drilling of SS 304
,”
Clean. Eng. Technol.
,
3
, p.
100104
.
136.
Singh
,
G.
,
Sharma
,
S.
,
Seikh
,
A. H.
,
Li
,
C.
,
Zhang
,
Y.
,
Rajkumar
,
S.
,
Kumar
,
A.
,
Singh
,
R.
, and
Eldin
,
S. M.
,
2023
, “
A Novel Study on the Influence of Graphene-Based Nanofluid Concentrations on the Response Characteristics and Surface-Integrity of Hastelloy C-276 During Minimum Quantity Lubrication
,”
Heliyon
,
9
(
9
), p.
e19175
.
137.
Zhang
,
Y.
,
Li
,
C.
,
Jia
,
D.
,
Zhang
,
D.
, and
Zhang
,
X.
,
2015
, “
Experimental Evaluation of the Lubrication Performance of MoS2/CNT Nanofluid for Minimal Quantity Lubrication in Ni-Based Alloy Grinding
,”
Int. J. Mach. Tools Manuf.
,
99
, pp.
19
33
.
138.
Resende
,
A. A. D.
, and
Gonçalves dos Santos
,
A.
,
2024
, “
Combination of Minimum Quantity Lubrication (MQL) With Solid Lubricant (SL): Challenges, Predictions and Implications for Sustainability
,”
Mach. Sci. Technol.
,
28
(
5
), pp.
1
42
.
139.
Barewar
,
S. D.
,
Kotwani
,
A.
,
Chougule
,
S. S.
, and
Unune
,
D. R.
,
2021
, “
Investigating a Novel Ag/ZnO Based Hybrid Nanofluid for Sustainable Machining of Inconel 718 Under Nanofluid Based Minimum Quantity Lubrication
,”
J. Manuf. Processes
,
66
, pp.
313
324
.
140.
Shokrani
,
A.
,
Betts
,
J.
, and
Jawahir
,
I. S.
,
2022
, “
Improved Performance and Surface Integrity in Finish Machining of Inconel 718 With Electrically Charged Tungsten Disulphide MQL
,”
CIRP Ann.
,
71
(
1
), pp.
109
112
.
141.
Khanafer
,
K.
,
Eltaggaz
,
A.
,
Deiab
,
I.
,
Agarwal
,
H.
, and
Abdul-latif
,
A.
,
2020
, “
Toward Sustainable Micro-Drilling of Inconel 718 Superalloy Using MQL-Nanofluid
,”
Int. J. Adv. Manuf. Technol.
,
107
(
7
), pp.
3459
3469
.
142.
Eskandari
,
B.
,
Bhowmick
,
S.
, and
Alpas
,
A. T.
,
2021
, “
Flooded Drilling of Inconel 718 Using Graphene Incorporating Cutting Fluid
,”
Int. J. Adv. Manuf. Technol.
,
112
(
1
), pp.
1
14
.
143.
Peng
,
R.
,
Yang
,
Q.
,
Zhao
,
L.
, and
Chen
,
M.
,
2023
, “
Evaluation of the Feasibility and Machining Performance of Internal Cooling Grinding Inconel 718 Superalloy
,”
J. Manuf. Processes
,
108
, pp.
551
564
.
You do not currently have access to this content.