Abstract

The microstructure and tribological characteristics of SiC/Ni60 composite coatings manufactured using directed energy deposition (DED) technology are investigated. The influence of different laser powers on the composites is studied. The evolution characteristics of the microstructure, the stepped variation pattern of microhardness, and the formation mechanism of wear resistance induced by different laser powers are observed in SiC/Ni60 composite coatings. Laser power variations emerged as crucial factors for improving the structure and performance of the composites. The relationship between microstructure, phase identification, and laser power is clarified using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), electron back-scattered diffraction (EBSD), and X-ray diffractometer (XRD). The best laser power is determined to be 3000 W based on microhardness and tribological characteristics. Additionally, the friction coefficient, wear rate, and wear behavior provide insights into the tribological features. Appropriate laser power parameters can suppress severe abrasive and adhesive wear and reduce the area of oxidative wear, resulting in a 51.99% reduction in wear rate. From the results obtained, it is evident that selecting the appropriate laser power provides a valuable direction for improving the performance of the composite coatings. The present work is expected to be applied to components such as crankshafts, where enhanced wear resistance is required.

References

1.
Lou
,
B. Y.
,
Chen
,
Z.
,
Bai
,
W. J.
, and
Dong
,
G.
,
2006
, “
Structure and Erosion Resistance of Ni60A/SiC Coatting by Laser Cladding
,”
Trans. Nonferrous Met. Soc. China
,
16
(
3
), pp.
643
646
.
2.
Davim
,
J. P.
,
2012
,
Lasers in Manufacturing
,
John Wiley and Sons
,
New York
. https://onlinelibrary.wiley.com/doi/book/10.1002/9781118562857
3.
Davim
,
J. P.
,
2020
,
Additive and Subtractive Manufacturing: Emergent Technologies
,
De Gruyter
,
Berlin
. https://www.degruyter.com/document/doi/10.1515/9783110549775/html?lang=en
4.
Zhao
,
L. Z.
,
Zhao
,
M. J.
,
Li
,
D. Y.
,
Zhang
,
J.
, and
Xiong
,
G. Y.
,
2012
, “
Study on Fe–Al–Si In Situ Composite Coating Fabricated by Laser Cladding
,”
Appl. Surf. Sci.
,
258
(
8
), pp.
3368
3372
.
5.
Wang
,
W.-R.
,
Qi
,
W.
,
Zhang
,
X.-L.
,
Yang
,
X.
,
Xie
,
L.
,
Li
,
D.-Y.
, and
Xiang
,
Y.-H.
,
2021
, “
Superior Corrosion Resistance-Dependent Laser Energy Density in (CoCrFeNi)95Nb5 High Entropy Alloy Coating Fabricated by Laser Cladding
,”
Int. J. Miner. Metall. Mater.
,
28
(
5
), pp.
888
897
.
6.
Silvain
,
J. F.
,
Niino
,
H.
, and
Yabe
,
A.
,
2000
, “
Nucleation and Growth of Surface Microstructures on Nd+:YAG Laser Ablated Elastomer/Carbon Composite
,”
Composites Part A
,
31
(
5
), pp.
469
478
.
7.
Wu
,
Z.
,
Li
,
T.
,
Li
,
Q.
,
Shi
,
B.
,
Li
,
X.
,
Wang
,
X.
,
Lu
,
H.
, and
Zhang
,
H.-C.
,
2019
, “
Process Optimization of Laser Cladding Ni60A Alloy Coating in Remanufacturing
,”
Opt. Laser Technol.
,
120
(
12
), p.
105718
.
8.
Li
,
B.
, and
Zeng
,
H. C.
,
2018
, “
Formation Combined With Intercalation of Ni and Its Alloy Nanoparticles Within Mesoporous Silica for Robust Catalytic Reactions
,”
ACS Appl. Mater. Interfaces
,
10
(
35
), pp.
29435
29447
.
9.
Guo
,
H.
,
Li
,
B.
,
Lu
,
C.
,
Zhou
,
Q.
, and
Jia
,
J.
,
2019
, “
Effect of WC–Co Content on the Microstructure and Properties of NiCrBSi Composite Coatings Fabricated by Supersonic Plasma Spraying
,”
J. Alloys Compd.
,
789
(
15
), pp.
966
975
.
10.
Dilawary
,
S. A. A.
,
Motallebzadeh
,
A.
,
Atar
,
E.
, and
Cimenoglu
,
H.
,
2018
, “
Influence of Mo on the High Temperature Wear Performance of NiCrBSi Hardfacings
,”
Tribol. Int.
,
127
(
11
), pp.
288
295
.
11.
Qu
,
C. C.
,
Li
,
J.
,
Bai
,
L. L.
,
Shao
,
J. Z.
,
Song
,
R.
, and
Chen
,
J. L.
,
2015
, “
Effects of the Thickness of the Pre-Placed Layer on Microstructural Evolution and Mechanical Properties of the Laser-Clad Coatings
,”
J. Alloys Compd.
,
644
(
28
), pp.
450
463
.
12.
Chen
,
X.
,
Qin
,
X.
,
Zhu
,
Z.
, and
Gao
,
K.
,
2018
, “
Microstructural Evolution and Wear Properties of the Continual Local Induction Cladding NiCrBSi Coatings
,”
J. Mater. Process. Technol.
,
262
(
12
), pp.
257
268
.
13.
Xie
,
Z. H.
,
Li
,
D.
,
Skeete
,
Z.
,
Sharma
,
A.
, and
Zhong
,
C. J.
,
2017
, “
Nanocontainer-Enhanced Self-Healing for Corrosion-Resistant Ni Coating on Mg Alloy
,”
ACS Appl. Mater. Interfaces
,
9
(
41
), pp.
36247
36260
.
14.
Gu
,
D.
,
Rao
,
X.
,
Dai
,
D.
,
Ma
,
C.
,
Xi
,
L.
, and
Lin
,
K.
,
2019
, “
Laser Additive Manufacturing of Carbon Nanotubes (CNTs) Reinforced Aluminum Mmatrix Nanocomposites: Processing Optimization, Microstructure Evolution and Mechanical Properties
,”
Addit. Manuf.
,
29
(
5
), p.
100801
.
15.
Kaushal
,
S.
,
Gupta
,
D.
, and
Bhowmick
,
H.
,
2017
, “
Investigation of Dry Sliding Wear Behavior of Ni–SiC Microwave Cladding
,”
ASME J. Tribol.
,
139
(
4
), p.
041603
.
16.
Kang
,
K. H.
,
Eun
,
T.
,
Jun
,
M. C.
, and
Lee
,
B. J.
,
2014
, “
Governing Factors for the Formation of 4H or 6H-SiC Polytype During SiC Crystal Growth: An Atomistic Computational Approach
,”
J. Cryst. Growth
,
389
(
5
), pp.
120
133
.
17.
Szkaradek
,
K. K.
,
2010
, “
Laser Melted ZrO2–Y2O3 Thermal Barrier Obtained by Plasma Spraying Method
,”
J. Alloys Compd.
,
505
(
2
), pp.
516
522
.
18.
Wang
,
Y.
,
Stella
,
J.
,
Darut
,
G.
,
Poirier
,
T.
,
Liao
,
H.
, and
Planche
,
M. P.
,
2017
, “
APS Prepared NiCrBSi-YSZ Composite Coatings for Protection Against Cavitation Erosion
,”
J. Alloys Compd.
,
699
(
10
), pp.
1095
1103
.
19.
He
,
L.
,
Tan
,
Y.
,
Wang
,
X.
,
Xu
,
T.
, and
Hong
,
X.
,
2014
, “
Microstructure and Wear Properties of Al2O3-CeO2/Ni-Base Alloy Composite Coatings on Aluminum Alloys by Plasma Spray
,”
Appl. Surf. Sci.
,
314
(
27
), pp.
760
767
.
20.
Kathuria
,
Y. P.
,
2001
, “
Nd–YAG Laser Cladding of Cr3C2 and TiC Cermets
,”
Surf. Coat. Technol.
,
140
(
3
), pp.
195
199
.
21.
Jiang
,
W.
, and
Molian
,
P.
,
2001
, “
Nanocrystalline TiC Powder Alloying and Glazing of H13 Steel Using a CO2 Laser for Improved Life of Die-Casting Dies
,”
Surf. Coat. Technol.
,
135
(
2–3
), pp.
139
149
.
22.
Ouyang
,
J. H.
,
Nowotny
,
S.
,
Richter
,
A.
, and
Beyer
,
E.
,
2001
, “
Laser Cladding of Yttria Partially Stabilized ZrO2 (YPSZ) Ceramic Coatings on Aluminum Alloys
,”
Ceram. Int.
,
27
(
1
), pp.
15
24
.
23.
Hidouci
,
A.
,
Pelletier
,
J. M.
,
Ducoin
,
F.
,
Dezert
,
D.
, and
El Guerjouma
,
R.
,
2000
, “
Microstructural and Mechanical Characteristics of Laser Coatings
,”
Surf. Coat. Technol.
,
123
(
1
), pp.
17
23
.
24.
Reinhart
,
G.
,
Nguyen-Thi
,
H.
,
Sarpi
,
B.
,
Bogno
,
A. A.
, and
Billia
,
B.
,
2014
, “
In Situ Investigation of Grain Migration by TGZM During Solidification in a Temperature Gradient
,”
Mater. Sci. Forum
,
790-791
(
10
), pp.
323
328
. www.scientific.net/MSF.790-791.323
25.
Salloum Abou Jaoudé
,
G.
,
Reinhart
,
G.
,
Nguyen-Thi
,
H.
,
Combeau
,
H.
,
Založnik
,
M.
,
Schenk
,
T.
, and
Lafford
,
T.
,
2013
, “
In Situ Experimental Observation of the Time Evolution of a Dendritic Mushy Zone in a Fixed Temperature Gradient
,”
C.R. Mec.
,
341
(
4–5
), pp.
421
428
.
26.
Nguyen Thi
,
H.
,
Reinhart
,
G.
,
Buffet
,
A.
,
Schenk
,
T.
,
Mangelinck-Noël
,
N.
,
Jung
,
H.
,
Bergeon
,
N.
,
Billia
,
B.
,
Härtwig
,
J.
, and
Baruchel
,
J.
,
2008
, “
In Situ and Real-Time Analysis of TGZM Phenomena by Synchrotron X-Ray Radiography
,”
J. Cryst. Growth
,
310
(
11
), pp.
2906
2914
.
27.
Soltani
,
H.
,
Reinhart
,
G.
,
Benoudia
,
M. C.
,
Ngomesse
,
F.
,
Zahzouh
,
M.
, and
Nguyen-Thi
,
H.
,
2020
, “
Impact of Growth Velocity on Grain Structure Formation During Directional Solidification of a Refined Al-20 wt% Cu Alloy
,”
J. Cryst. Growth
,
548
(
20
), p.
125819
.
28.
Lu
,
J. Z.
,
Cao
,
J.
,
Lu
,
H. F.
,
Zhang
,
L. Y.
, and
Luo
,
K. Y.
,
2019
, “
Wear Properties and Microstructural Analyses of Fe-Based Coatings With Various WC Contents on H13 Die Steel by Laser Cladding
,”
Surf. Coat. Technol.
,
369
(
13
), pp.
228
237
.
29.
Wang
,
Q.
,
Li
,
Q.
,
Chen
,
F. Q.
,
Zhang
,
L.
,
Li
,
J. D.
, and
Zhang
,
J. W.
,
2022
, “
Corrosion Behavior of Laser-Cladding NiCrBSi Coating in Molten Aluminum Alloy
,”
J. Laser Appl.
,
34
(
2
), p.
022022
.
30.
Fu
,
F.
,
Zhang
,
Y.
,
Chang
,
G.
, and
Dai
,
J.
,
2016
, “
Analysis on the Physical Mechanism of Laser Cladding Crack and Its Influence Factors
,”
Optik
,
127
(
1
), pp.
200
202
.
31.
Hu
,
G.
,
Yang
,
Y.
,
Qi
,
K.
,
Lu
,
X.
, and
Li
,
J.
,
2020
, “
Investigation of the Microstructure and Properties of NiCrBSi Coating Obtained by Laser Cladding With Different Process Parameters
,”
Trans. Indian Inst. Met.
,
73
(
10
), pp.
2623
2634
.
32.
Chen
,
H.
,
Xu
,
C.
,
Qu
,
J.
,
Hutchings
,
I. M.
,
Shipway
,
P. H.
, and
Liu
,
J.
,
2005
, “
Sliding Wear Behaviour of Laser Clad Coatings Based upon a Nickel-Based Self-Fluxing Alloy Co-Deposited With Conventional and Nanostructured Tungsten Carbide–Cobalt Hardmetals
,”
Wear
,
259
(
7–12
), pp.
801
806
.
33.
Coury
,
F. G.
,
Kaufman
,
M.
, and
Clarke
,
A. J.
,
2019
, “
Solid-Solution Strengthening in Refractory High Entropy Alloys
,”
Acta Mater.
,
175
(
14
), pp.
66
81
.
34.
Huebner
,
J.
,
Kata
,
D.
,
Kusiński
,
J.
,
Rutkowski
,
P.
, and
Lis
,
J.
,
2017
, “
Microstructure of Laser Cladded Carbide Reinforced Inconel 625 Alloy for Turbine Blade Application
,”
Ceram. Int.
,
43
(
12
), pp.
8677
8684
.
35.
Correa
,
E. O.
,
Alcântara
,
N. G.
,
Valeriano
,
L. C.
,
Barbedo
,
N. D.
, and
Chaves
,
R. R.
,
2015
, “
The Effect of Microstructure on Abrasive Wear of a Fe–Cr–C–Nb Hardfacing Alloy Deposited by the Open Arc Welding Process
,”
Surf. Coat. Technol.
,
276
(
16
), pp.
479
484
.
36.
Shafirstien
,
G.
,
Bamberger
,
M.
,
Langohr
,
M.
, and
Maisenhalder
,
F.
,
1991
, “
Laser Surface Alloying of Carbon Steel and α-Fe With CrB2
,”
Surf. Coat. Technol.
,
45
(
1–3
), pp.
417
423
.
37.
Zhang
,
Z. Q.
,
Wang
,
H. D.
,
Xu
,
B. S.
, and
Zhang
,
G. S.
,
2015
, “
Investigation on Influence of WC–Ni Addition on Rolling Contact Fatigue Behavior of Plasma Sprayed Ni-Based Alloy Coating
,”
Tribol. Int.
,
90
(
11
), pp.
509
518
.
38.
Wu
,
N.
,
Li
,
Y.
, and
Ma
,
Q.
,
2014
, “
Microstructure Evolution and Shear Strength of Vacuum Brazed Joint for Super-Ni/NiCr Laminated Composite With Ni–Cr–Si–B Amorphous Interlayer
,”
Mater. Des.
,
53
(
1
), pp.
816
821
.
39.
Tian
,
Y.
,
Tomus
,
D.
,
Rometsch
,
P.
, and
Wu
,
X.
,
2017
, “
Influences of Processing Parameters on Surface Roughness of Hastelloy X Produced by Selective Laser Melting
,”
Addit. Manuf.
,
13
(
1
), pp.
103
112
.
40.
Zhang
,
C.
,
Liu
,
L. M.
,
Xu
,
H. F.
,
Xiao
,
J. K.
,
Zhang
,
G.
, and
Liao
,
H. L.
,
2017
, “
Role of Mo on Tribological Properties of Atmospheric Plasma-Sprayed Mo-NiCrBSi Composite Coatings Under Dry and Oil-Lubricated Conditions
,”
J. Alloys Compd.
,
727
(
38
), pp.
841
850
.
41.
Bogno
,
A. A.
,
Spinelli
,
J. E.
,
Afonso
,
C. R. M.
, and
Henein
,
H.
,
2015
, “
Microstructural and Mechanical Properties Analysis of Extruded Sn–0.7Cu Solder Alloy
,”
J. Mater. Res. Technol.
,
4
(
1
), pp.
84
92
.
42.
Li
,
X. X.
,
Zhang
,
Q. Y.
,
Zhou
,
Y.
,
Liu
,
J. Q.
,
Chen
,
K. M.
, and
Wang
,
S. Q.
,
2016
, “
Mild and Severe Wear of Titanium Alloys
,”
Tribol. Lett.
,
61
(
2
), pp.
14
22
.
43.
Munagala
,
V. N. V.
,
Bessette
,
S.
,
Gauvin
,
R.
, and
Chromik
,
R. R.
,
2020
, “
Sliding Wear of Cold Sprayed Ti6Al4V Coatings: Effect of Porosity and Normal Load
,”
Wear
,
450–451
(
5
), p.
203268
.
44.
Wang
,
J.
,
Yan
,
F.
, and
Xue
,
Q.
,
2009
, “
Tribological Behavior of PTFE Sliding Against Steel in Sea Water
,”
Wear
,
267
(
9–10
), pp.
1634
1641
.
45.
Davim
,
J. P.
,
2011
,
Tribology for Engineers: II. Friction and Wear
,
Elsevier
,
Amsterdam
. https://www.sciencedirect.com/book/9780857091147/tribology-for-engineers
46.
Pou
,
J.
,
Riveiro
,
A.
, and
Davim
,
J. P.
,
2021
,
Additive Manufacturing: III. Developments in Additive Manufacturing
,
Elsevier
,
Amsterdam
. https://shop.elsevier.com/books/additive-manufacturing/pou/978-0-12-818411-0
47.
Zhao
,
Y. C.
,
He
,
W.
,
Du
,
H. H.
, and
Luo
,
P.
,
2018
, “
The Effect of Laser Power on the Interface Microstructure of a Laser Remelting Nano-SiC Modified Fe-Based Ni/WC Composite Coating
,”
Coatings
,
8
(
9
), pp.
297
307
.
48.
Choudhary
,
C.
,
Sahoo
,
K. L.
,
Roy
,
H.
, and
Mandal
,
D.
,
2022
, “
Effect of Grain Refiner on Microstructural Feature Influence Hardness and Tensile Properties of Al-7Si Alloy
,”
J. Mater. Eng. Perform.
,
31
(
4
), pp.
3262
3273
.
49.
Davim
,
J. P.
,
2013
,
Wear of Advanced Materials
,
John Wiley and Sons
,
New York
. https://www.wiley.com/en-us/Wear+of+Advanced+Materials-p-9781118565865
50.
Dinaharan
,
I.
,
Kalaiselvan
,
K.
,
Akinlabi
,
E. T.
, and
Davim
,
J. P.
,
2017
, “
Microstructure and Wear Characterization of Rice Husk Ash Reinforced Copper Matrix Composites Prepared Using Friction Stir Processing
,”
J. Alloys Compd.
,
718
(
29
), pp.
150
160
.
You do not currently have access to this content.