Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
NARROW
Date
Availability
1-1 of 1
Keywords: back-propagation neural network
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Journal:
Journal of Tribology
Publisher: ASME
Article Type: Research-Article
J. Tribol. April 2015, 137(2): 021801.
Paper No: TRIB-13-1255
Published Online: April 1, 2015
... esters and their wear data were included in the back-propagation neural network (BPNN)-quantitative structure tribo-ability relationship (QSTR) model with two-dimensional (2D) and three-dimensional (3D) QSTR descriptors. The predictive performance of the BPNN-QSTR model is acceptable. The findings...
Includes: Supplementary data